Next: List of abbreviations
Up: Neural Networks: Automata and
Previous: #zeng94j###
Contents
- accepting state
,
- activation function
,
- activation
function
- differentiable
- activation function
,
- activation
function
- properties
- activation function
,
- radial basis
functions
- activation
function
- rational
- threshold|seethreshold linear unit
- activation
- function
- derivative
- Adali@Adali,
T.
- Alon, N.
,
,
,
,
,
- Alopex
- alphabet
,
- Alquezar@Alquézar,
R.
,
,
- asynchronous DTRNN
- asynchronous transduction
- attractor
- attractor
- limit cycle
- Aussem, A.
- automata
- deterministic finite-state
,
,
,
,
,
,
,
,
,
,
,
,
,
- finite-state
,
,
,
,
- neural nets and finite-state automata
- pushdown
- backpropagation
,
,
- backpropagation
- focused
- through
time
,
,
,
,
- Baltersee,
J.
- batch learning
,
,
,
,
- Bengio, Y.
,
- Bengio. Y.
- bias
- as a learnable parameter
,
- notation
- Blair, A.
,
,
,
,
,
- blank symbol
- in Turing Machines
,
- bounds to number of units
,
- Box, G.E.
- BPS
- BPTT|seebackpropagation through time
- Bradley, M.J.
- Bridle,
J.S.
- Bulsari,
A.B.
,
- Carrasco,
R.C.
,
,
,
,
,
,
,
,
,
,
- Casey, M.
,
- Cauwenberghs, G.
,
- Chalmers, D.J.
- Chambers, J.
- channel equalization
- Chen, W.-Y.
,
- Cheng, Y.
- Chiu,
C.-C.
- Chomsky's hierarchy
,
- Chomsky, N.
- Chovan, T.
- Chrisman, L.
- Cid-Sueiro, J.
,
- Cleeremans, A.
,
,
,
,
,
- clock
- external
- Clouse, D.S.
,
- clustering
- hierarchical
,
- of
DTRNN state vectors
,
,
,
,
- compression of
signals
- compressor
- in RAAM
- computability of natural functions
- Connor,
J.T.
- construction of FSM in DTRNN
,
,
,
,
,
,
- context-free
- grammar
,
,
,
,
,
- language
- context-sensitive
grammar
,
,
- continuous-time recurrent neural
networks
- control
- countable set
- cycles in neural networks
,
,
,
- Das, R.
,
- Das,
S.
,
,
,
,
,
- decision function
- decoder
- in
RAAM
,
- in RAAM
networks|seerecursive auto-associative memory
- definite-memory
machines
- denumerable set
- derivatives
- of error
,
,
,
- deterministic finite-state
automata
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- DFA|seedeterministic finite-state automata
- discrete-time recurrent neural
network
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- discrete-time recurrent neural
network
- first-order
- discrete-time recurrent
neural network
,
- discrete-time recurrent neural
network
,
- discrete-time
recurrent neural network
,
- discrete-time recurrent
neural network
,
- discrete-time recurrent neural network
,
- discrete-time recurrent neural
network
,
- discrete-time recurrent
neural network
,
- discrete-time recurrent neural network
,
- discrete-time
recurrent neural network
,
- discrete-time recurrent neural
network
,
,
- second-order
- discrete-time recurrent neural network
,
,
- discrete-time recurrent neural
network
,
,
- discrete-time recurrent neural network
,
- discrete-time recurrent
neural network
,
,
- discrete-time recurrent neural
network
,
- discrete-time recurrent
neural network
,
- discrete-time recurrent neural
network
,
,
- discrete-time recurrent
neural network
,
- discrete-time recurrent neural
network
,
,
- discrete-time
recurrent neural network
,
- discrete-time recurrent neural
network
,
- discrete-time recurrent
neural network
- Turing computability
- discrete-time recurrent neural network
,
- discretization
- of DTRNN state space
- of neuron outputs
- Draye, J.P.
- Dreider,
J.F.
,
- DTRNN|seediscrete-time recurrent neural network
- dynamical system
- dynamics
- atractor
- continuous-state
- next state
- of a DTRNN
,
,
,
,
,
,
- Dzielinski, A.
- EKF
- Elman net
,
,
,
,
- Elman, J.L.
,
,
,
,
,
,
,
,
,
,
,
,
- empty string
- encoder
- in
RAAM
,
,
- encoding
- of FSM in DTRNN
,
,
,
- of input
symbols
- of Turing
machines in DTRNN
- equivalence
- of BPTT and RTRL
- of DFA and Moore machines
- of FSM and DTRNN
,
,
- of Moore and Mealy machines
- of sequence classification and
transduction
- of TLU
and McCulloch-Pitts units
- error function
,
- error function
- differentiable
,
- error
function
- gradient of
- error function
,
,
- error
function
- in batch learning
- error function
,
,
- in online learning
- in pattern learning
- error
function
,
- error function
- local minima
,
- error
function
- minima
- minima
- multiple
- error function
- quadratic
- special
- excitation threshold
- excitatory connection
,
- exclusive encoding
- of symbols
,
- exclusive-or function
,
,
,
- expression
- regular
,
- regular
- equivalence with DTRNN
- equivalence with finite-state machines
- temporal
propositional
- extended Kalman filter
- extraction
- of FSM from DTRNN
,
,
,
- of FSM from DTRNN
- through partition of
state space
,
,
- of FSM from
DTRNN
- trivial
- of FSM from DTRNN
- using
clustering
- of FSM from
DTRNN
,
- of FSM from DTRNN
,
- of
FSM from DTRNN
- using self-organizing maps
- of FSM from DTRNN
,
- Fahlman, S.E.
,
,
,
,
- Fallside, F.
,
,
,
,
,
- fan-in
,
- fan-out
- Fanelli,
R.
,
,
- feedback
- in DTRNN
,
- in
DTRNN
- local
- in DTRNN
,
,
- feedforward neural net
- as next-state function
- as output function
- feedforward
neural net
,
- feedforward neural net
,
,
- feedforward neural
net
- in BPTT training
- feedforward neural net
- in RAAM
- layered
- lower-triangular
,
- training
- feedforward neural
net
- two-layer
- feedforward neural net
,
- feedforward neural net
,
,
- Feldkamp, L.A
- FFNN|seefeedforward neural net
- Figueiras-Vidal,
A.R.
- filtering of discrete-time signals
- final
state
- of a Turing machine
- final state
,
- finite-memory machines
- finite-state automata
- deterministic
- finite-state
automata
,
- finite-state machine
- finite-state machines
- finite-state machines
- and neural nets
- finite-state
machines
- approximate
- finite-state machines
- as transducers
- classes
- finite-state
machines
- compatible with learning set
- finite-state machines
- definite-memory machines
- deterministic
- DTRNN
behaving as
,
,
,
- finite-state
machines
,
- earliest DTRNN as
- emulation by DTRNN
- finite-state machines
,
,
,
,
- finite-state
machines
,
- finite-state machines
- encoding in
DTRNN
- finite-state
machines
,
- finite-state machines
,
- encoding in threshold
DTRNN
,
,
,
- equivalence to DTRNN
,
- extraction
- extraction from
DTRNN
,
,
- finite-state
machines
- finite-memory machines
- finite-state
machines
- inference
- finite-state machines
,
,
,
- finite-state
machines
- learning by DTRNN
- finite-state machines
,
,
- learning in sigmoid DTRNN
- next-state
function
- probabilistic
- pushdown automata as
- states
- as
clusters in state space
,
,
,
,
,
- transition
- finite-state
machines
,
- with stack
- finite-state
- automata
- automata
- deterministic
,
,
,
,
,
,
,
,
,
,
,
,
,
- behavior
- behavior
-
of DTRNN
- of DTRNN
,
,
,
,
,
,
,
,
,
,
,
,
,
- computation
,
,
- fixed points
,
- Forcada, M.L.
,
,
,
,
,
,
,
- fractal dimension
- Frasconi, P.
,
- FSM|seefinite-state machines
- functions
- computable by TLU
- recursively computable
- generalization
,
,
- Gershenfeld, N.A.
- Giles, C.L.
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- Gori, M.
,
- Goudreau,
M.
- Goudreau, M.W.
,
,
,
,
- gradient
- descent
,
,
,
,
,
- learning algorithm
,
,
,
,
- Gradient
,
- gradient
,
,
,
,
,
- pseudo-gradient
learning
- vanishing
- grammar
,
,
,
- grammar
- as generator
- Chomsky's hierarchy
,
- context-free
,
,
,
,
- context-sensitive
,
- inference
,
,
,
,
,
,
- language generated
by
- regular
,
- rules in DTRNN
,
- Tomita's
- unrestricted
,
- grammatical inference
,
,
,
,
,
- grammatical inference
- using DTRNN
- grammatical
inference
,
- grammatical inference
,
,
,
,
,
,
- Haykin, S.
,
,
,
,
,
- hidden
- layer
,
,
,
,
- state
,
,
- state
- neural architectures without
,
- unit
,
,
,
,
- unit
- activation patterns
- units
- hierarchy
- Chomsky's
,
- Hopfield, J.J.
- Horne,
B.G.
,
,
,
- Hush, D.R.
,
,
,
- Ifeachor,
E.C.
- implementation
- of FSM in
DTRNN
,
,
,
,
,
,
- inductive bias
,
- inhibitory connection
,
- initial state
-
as a learnable parameter
- as a learnable
parameter
- of a DTRNN
,
- of a
DTRNN
- derivatives
- of a DTRNN
- learning
- of a
FSM
- of a pushdown
automaton
- of a
Turing machine
- input
- alphabet
,
,
,
,
- layer
- neurons
,
,
- sequence
,
,
- sequence
- length
- string
- symbol
- symbol
- representation
,
- symbols
- representation
- to a
DTRNN
,
,
,
,
- to a TLU
,
,
,
- window
- window
- in a NARX
,
- in a TDNN
,
- instability
- internal
representation
,
,
- interpretation
- of DTRNN
output
- as symbols
- of DTRNN outputs
- of DTRNN outputs
- as
probabilities
,
,
- of DTRNN
outputs
- as symbols
- Janacek,
G.
- Jordan, M.I.
,
- Kaiser,
J.F.
- Kalman
filter
- extended
- Kalman, B.L.
- Kechriotis,
G.
- Kleene's
theorem
- Kleene, S.C.
,
,
,
,
,
,
,
,
- Kohavi, Z.
- Kohonen, T.
,
,
,
- Kolen, J.F.
,
,
- Kremer, S.C
,
,
,
,
,
,
- Kremer, S.C.
,
,
,
- Kuhn, G.M.
,
,
,
- Kwasny,
S.C.
- language
- recognizer
- accepted by DTRNN
- accepted by Turing machines
- acceptor
,
,
- acceptor
- neural
,
- Turing machine as
- concatenation
- context-free
- defined
by grammar
- finite-state
- generated by a grammar
- generator
- generator
- probabilistic
- learning by DTRNN
- natural
- recognition
by DTRNN
- recognizer
,
,
- regular
,
,
,
,
- regular
- acceptor
- recognition by DTRNN
- transducer
- Lawrence, S.C.
- layers
- hidden
,
,
,
,
- in
BPTT
,
- in feedforward neural net
,
- output
,
,
- LBA
- learnable parameters
,
,
,
,
,
,
,
,
,
,
,
- learnable parameters
- updating
- batch
- learnable
parameters
- updating
- gradient
- learnable parameters
- updating
- in
BPTT
- in perturbative
methods
- in RTRL
- learnable
parameters
- updating
- online
- learnable parameters
- updating
,
- learnable
parameters
- updating
,
- pattern
,
- learnable
parameters
- updating
- random
- learning algorithm
,
,
- learning algorithm
- backpropagation
- for DTRNN
,
- generalization test
- learning
algorithm
- gradient-based
- learning algorithm
,
,
,
,
,
- learning
algorithm
,
- learning algorithm
,
- gradient-descent
- inductive bias
- learning
algorithm
- long-term dependencies
- learning algorithm
- non-gradient-based
- learning
algorithm
,
- learning algorithm
,
,
- learning
algorithm
- pseudo-gradient-based
- learning algorithm
- recurrent cascade correlation
- learning set
,
,
,
,
,
,
,
,
,
,
,
- learning set
- noisy
- of
trees
- learning
set
- partition
- Li,
C.J.
- Li, L.
- Lin, T.
- linearly-bounded automata
- local minima
,
,
- local-feedback
DTRNN
,
,
- logical functions
,
,
- logical functions
- computability
- logistic function
,
,
- long-term
dependencies
,
,
,
,
,
- lower-triangular feedforward neural
net
,
- Manolios, P.
,
,
- Mars,
P.
- Martin, R.D.
- McClelland,
J.L.
- McCulloch, W.S.
,
,
,
,
,
,
- McCulloch-Pitts net
- Mealy machines
,
,
,
,
,
,
,
,
- Mealy machines
- as sequence
procesors
- binary
- neural
- Mealy
machines
,
- Mealy
machines
,
- Mealy machines
,
- Mealy
machines
,
- minimization
- of error function
- of
FSM
,
- Minsky, M.L.
,
,
,
,
,
,
,
,
,
- Mitra, S.K.
- Moore machines
,
,
,
,
- Moore machines
- neural
- Moore
machines
,
- Moore machines
,
,
,
,
,
,
- Moore
machines
,
- Mozer,
M.C.
,
,
,
,
,
,
- multilayer perceptron
,
- Narendra,
K.S.
,
- NARX (nonlinear
auto-regressive with exogenous inputs)
- natural
language
- natural numbers
- natural numbers
- functions of
,
- Neco@Ñeco, R.P.
,
- Nerrand, O.
- neural
- Mealy machines
- Moore machine
- state
machine
,
,
,
,
,
,
,
,
,
,
,
,
- neurocontrol
- neuron field
,
- next move function
- next-state function
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- next-state function
- of a TDNN
- node
- of a tree
,
,
- non-gradient-based
- learning algorithms
,
,
- nonterminal
symbols
,
- NSM|seeneural state
machine
- observability of
state
,
- Omlin, C.W.
,
,
- one-hot encoding
- of
symbols
,
,
- online learning
,
,
- online
learning
- using RTRL
- online learning
,
- Oppenheim, A.V.
- Ortiz-Fuentes, J.D.
- output
- alphabet
,
,
- desired
,
,
- function
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- of a DTRNN
- of a TLU
,
,
,
- of DTRNN
- as projection of
state vector
,
,
,
- of sigmoid units
- sequence
,
,
,
- sequence
- length
- space
,
- space
- of a DTRNN
- symbols
- representation
- unit
,
,
- window
- window
- in a
NARX
,
- P/Poly
- computational class
- Parberry, I.
- Parisi, R.
- parsing
- parsing
- shift-reduce
- Parthasarathy, K.
,
- partition
- of learning sets
- of state space
,
,
,
,
,
,
,
- pattern learning
,
,
- PDA
,
- Pearlmutter, B.
- perceptron
- multilayer
- two-layer
- Perrin, D.
- Pineda, F.J.
- Pitts, W.H.
,
,
,
,
,
,
- Pollack,
J.B.
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- prediction
- by DTRNN
- of a
sequence
,
- of next symbol
- of next symbol
- using DTRNN
,
,
- time-series
,
- time-series
- using
DTRNN
- predictive coding
,
- probabilistic
- finite-state machine
- language
generator
- probabilities
- in DTRNN outputs
,
,
,
- probability distribution
,
,
,
- processing
- element
- of natural
language
- of sequences
,
,
,
- of
sequences
- adaptive
- classification
- of sequences
- using
DTRNN
,
,
,
- of
sequences
,
- of sequences
,
,
- of
strings
,
- sequential
- synchronous
- production
- of a grammar
,
- pseudo-gradient
- learning
algorithm
- pushdown
automaton
,
,
,
,
- pushdown automaton
- as Turing machine simulator
- Puskorius,
G.V
- Qian,
N.
- RAAM|seerecursive auto-associative memory
- radial basis functions
- rational activation function
,
,
- real-time recurrent learning
,
,
,
,
,
,
- real-time recurrent
learning
- relation to extended Kalman filter
- recognition
- of languages
- by DTRNN
- of
sequences
,
- of speech
- recognizer
- dynamical
,
,
- finite-state
,
- for context-free
languages
- language
,
,
- neural
- reconstructor
- in RAAM
- recurrent cascade correlation
,
- recurrent neural
network
- discrete-time
,
- recurrent neural network
,
,
,
,
- recurrent
neural network
,
- recurrent neural network
,
- recurrent neural
network
,
- recurrent neural network
,
- recurrent neural
network
,
,
- recurrent neural network
,
- recurrent neural
network
,
- recurrent neural network
,
- recurrent neural
network
,
,
,
- recurrent neural network
,
,
,
- recurrent neural
network
,
- recurrent neural network
,
,
,
,
,
- recurrent neural
network
,
- recurrent neural network
,
,
- recurrent neural
network
,
- recurrent neural network
,
,
,
- recurrent neural
network
,
- recurrent neural network
,
,
,
- recursive auto-associative memory
,
,
,
- recursive auto-associative memory
- labeling
- recursive hetero-associative memory
- recursivity
- in grammars
- region
- of output
space
- in DTRNN
- of output space
,
- in RAAM
- of
state space
- in DTRNN
- of state space
,
- in RAAM
- regular
- events
- expression
- grammar
,
- language
,
,
,
- language
- acceptor
- recognition by
DTRNN
- representation
- learned by DTRNN
,
,
,
- of FSM in DTRNN
- of FSM
- in DTRNN
- of inputs in
DTRNN
,
,
,
- of
outputs in DTRNN
- of parse trees in RAAM
- of sequences in RAAM
,
- of terminals in RAAM
- rewrite rules
- in a grammar
- recursive
- Robinson, A.J.
,
,
,
,
,
- Robinson-Fallside network
- augmented
- Rosenberg, C.R.
- RTRL|seereal-time recurrent learning
- rule
- extraction from DTRNN
- representation in DTRNN
- Rumelhart, D.E.
,
,
- Sajda, J.
,
,
- sampling
- discrete-time
,
- Sanfeliu, A.
,
,
- Saxen@Saxén, H.
,
- Schafer, R.W.
- second-order DTRNN
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
- Sejnowski,
T.J.
,
- self-organizing feature maps
,
- sequence
- classification
- continuation
- generation
,
- input
,
,
- output
,
,
,
- prediction
,
,
- prediction
- for speech
coding
- processing
,
,
- processing
- adaptive
- as language recognition
- long-term dependencies
,
- sequential
- synchronous
- using DTRNN
,
,
,
,
,
,
,
- processor
- discrete-time
- state-based
- recognition
,
- representation
- in RAAM
- transduction
- transduction
- synchronous
,
- sequential
- processing
- processing
- in
Mealy and Moore machines
- transduction
- by
DTRNN
- Shanblatt, M.A.
- Siegelmann,
H.T.
,
,
- sigmoid
- function
- function
- logistic
,
,
- units
- DTRNN using
- signal
- compression
- discrete-time
,
- filtering
- processing
- Sima@Šíma, J.
,
- single-layer
- DTRNN
,
- feedforward neural net
- feedforward neural net
- as output function
- feedforward
neural net
,
- Siu, K.Y.
- Sluijter, R.J.
,
- SOFM
,
- Sontag, E.D.
,
- space complexity of learning
- speech
- coding
- through sequence prediction
- using DTRNN
- modelling of coarticulatory features
- recognition
- Sperduti, A.
,
- stability of DTRNN as language recognizers
- stability
- of DTRNN as language recognizers
- stack
- empty
- external
,
,
,
,
,
- in pushdown automata
,
- simulating
Turing machines
- unary
- Starita, A.
- start symbol of a grammar
- start symbol
- of a
grammar
,
- state space
- of DTRNN
,
,
- of
DTRNN
- clustering
- state
space
- of DTRNN
,
,
- state space
- of DTRNN
,
- state
space
- of DTRNN
,
- of DTRNN
,
- partition
- state space
- of
DTRNN
,
,
- of DTRNN
,
- of
DTRNN
,
- state
space
- of DTRNN
,
- state space
- of
DTRNN
- regions
- topological mapping
- of RAAM
- state
space
- of RAAM
- regions
- state space
- partition
- to extract
FSM
,
- state
- accepting
- accepting
- of a pushdown
automaton
- final
- of a Turing machine
,
- initial
- of a DTRNN
,
- of a DTRNN
- learning
,
- of
a DTRNN
,
- of a pushdown automaton
- of a Turing machine
- initial|seealsoinitial state
- of a FSM
- observable
,
- of a FSM
- of a pushdown automaton
- of a Turing machine
- of
DFA
- representation in DTRNN
- transition
,
- transition
- in a FSM
,
,
,
,
- in a Turing
machine
- unit
- units
,
,
,
,
,
,
- units
- hidden
,
,
- in DTRNN
,
- vector
,
,
,
,
- vector
- clustering
,
,
- in a NARX
- state-based
sequence processor
- step function
- string
,
- string
- acceptance
- by a DFA
- by a DTRNN
- by a
pushdown automaton
- by a
Turing machine
- continuation
- by DTRNN
,
- empty
- generation
- by a grammar
- by DTRNN
- input
,
- output
- processing
- by DTRNN
,
- by FSM
- recognition
- by automata
- rejection
- by DFA
- by
DTRNN
- transduction
- translation
- translation
- by DTRNN
- valid
- as defined by grammar
- super-Turing
- computation
- by DTRNN
- subclass P/Poly
- Swift, L.
- symbol
- blank
- in Turing machine
,
- encoding
- one-hot, local, or exclusive
- end-of-string
,
- in stack of pushdown automaton
- in tape of Turing
machine
- input symbol
,
- input symbol
- representation in DTRNN
,
,
- next symbol
- prediction
- next
symbol
,
- next symbol
,
- nonterminal
,
- one-hot
encoding
,
- output
,
,
,
- output
- by DTRNN
,
- representation in DTRNN
- stack
,
- start
symbol
- of a grammar
- start symbol
,
,
- string
,
- terminal
,
,
- useless
- variable
- synapse
,
- synapse
- excitatory
,
- inhibitory
,
- synchronous
- processing
- sequence
transduction
- transduction
,
- transduction
- by
DTRNN
- system identification
- tape
- alphabet, in a
Turing machine
- in
linearly bounded automata
- of a nonuniform Turing machine
- of a Turing machine
,
,
,
,
- target
,
,
,
- target`don't care'' targets
- TDNN
- teacher forcing
- temporal propositional
expression
,
- terminal symbol
,
,
,
- test set
- threshold linear unit
,
,
,
,
,
,
,
,
,
,
,
- threshold unit
- time complexity
- of learning
,
- time-delay neural network
- time-series
prediction
,
- time-series prediction
- using DTRNN
- Tino@Tino, P.
,
,
- TLU|seethreshold linear unit
- TM|seeTuring machine
- Tomita, M.
,
- TPE|seetemporal propositional expression
- training algorithm|seelearning algorithm
- transducer
- finite-state
- of strings
- transduction
- of
sequences
- of sequences
- asynchronous
- of
sequences
- sequential
- of sequences
- synchronous
,
- using DTRNN
- of trees
- transition
- function|seenext-state function
- in a FSM
,
,
,
,
,
,
- in a pushdown automaton
,
- in a Turing machine
- translation|seetransduction
- tree
- learning set
- node
,
,
- storing in RAAM
,
,
- transduction
- Turing
machine
,
,
,
,
,
,
,
,
,
,
,
,
,
- Turing machine
- deterministic
- Turing
machine
- nondeterministic
- Turing machine
- nonuniform
,
- universal
,
- Turing, A.M.
- two-layer feedforward neural
net
,
,
,
- type 0 grammar
- type 1 grammar
- type 2 grammar
- type 3 grammar
- unfolding
- in BPTT
- unit
- demon
- threshold
- threshold linear
,
,
- universal Turing machine
,
- Unnikrishnan,
K.P.
- unrestricted grammar
,
- updating of learnable
parameters
- batch
- in BPTT
- in perturbative methods
- in RTRL
- online
,
- pattern
,
- random
- using gradient
- valence
- of a tree
- vanishing gradient
- variable
- in a grammar
,
,
,
- vector
- input vector
- input vector
- to a DTRNN
- to a TLU
- of weights
- space
- of inputs
- of outputs
- state vector
,
,
- state vector
- clustering
- state
vector
,
- state vector
,
,
- in a
NARX
- Venugopal, K.P.
- Waibel,
A.
- Wang,
J.
- Watrous, R.L.
,
,
,
- Weigend,
A.S.
- weights
- as learnable parameters
,
- derivatives of error with respect to
- derivatives of state with respect to
- equivalence
in BPTT
- feedback
- in DTRNN
- in TDNN
- organized in blocks
- notation
- perturbation
- perturbation
- learning algorithm
,
- space
- vector
- Werbos, P.J.
,
,
,
- Williams,
R.J.
,
,
,
,
,
,
,
- window
- of inputs
- of inputs
- in a
NARX
,
,
- of
inputs
- in a TDNN
- of outputs
- of outputs
- in a NARX
,
- Wu, G.
- Wu, L.
- Zbikowski,
R.
- Zeng, Z.
,
,
,
- Zipser, D.
,
,
,
,
,
,
[author]
2
Debian User
2002-01-21