next up previous contents index
Up: Neural Networks: Automata and Previous: List of abbreviations   Contents   Index

Bibliography

Adali, T., Bakal, B., Sönmez, M. K., Fakory, R., and Tsaoi, C. O. (1997).
Modeling nuclear reactor core dynamics with recurrent neural networks.
Neurocomputing, 15(3-4):363-381.

Alon, N., Dewdney, A. K., and Ott, T. J. (1991).
Efficient simulation of finite automata by neural nets.
Journal of the Association of Computing Machinery, 38(2):495-514.

Alquézar, R. and Sanfeliu, A. (1995).
An algebraic framework to represent finite state automata in single-layer recurrent neural networks.
Neural Computation, 7(5):931-949.

Aussem, A., Murtagh, F., and Sarazin, M. (1995).
Dynamical recurrent neural networks -- towards environmental time series prediction.
International Journal of Neural Systems, 6:145-170.

Baltersee, J. and Chambers, J. (1997).
Non-linear adaptive prediction of speech with a pipelined recurrent neural network and a linearised recursive least squares algorithm.
In Proceedings of ECSAP'97, European Conference on Signal Analysis & Prediction.

Bengio, Y., Simard, P., and Frasconi, P. (1994).
Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157-166.

Blair, A. and Pollack, J. B. (1997).
Analysis of dynamical recognizers.
Neural Computation, 9(5):1127-1142.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994).
Time series analysis: forecasting and control.
Prentice-Hall, Englewood Cliffs, NJ.
3rd. ed.

Bradley, M. J. and Mars, P. (1995).
Application of recurrent neural networks to communication channel equalization.
In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 5, pages 3399-3402.

Bridle, J. S. (1990).
Alphanets: A recurrent neural network architecture with a hidden Markov model interpretation.
Speech Communication, 9:83-92.

Bullock, T. H. and Horridge, A. G. (1965).
Structure and Function in The Nervous System of Invertebrates.
W.H. Freeman and Co., New York, NY.

Bulsari, A. B. and Saxén, H. (1995).
A recurrent network for modeling noisy temporal sequences.
Neurocomputing, 7(1):29-40.

Burks, A. W. and Wang, H. (1957).
The logic of automata.
Journal of the ACM, 4:193-218 and 279-297.

Carrasco, R. C., Forcada, M. L., and Santamaría, L. (1996).
Inferring stochastic regular grammars with recurrent neural networks.
In Miclet, L. and de la Higuera, C., editors, Grammatical Inference: Learning Syntax from Sentences, pages 274-281, Berlin. Springer-Verlag.
Proceedings of the Third International Colloquium on Grammatical Inference, Montpellier, France, 25-27 September 1996.

Carrasco, R. C., Forcada, M. L., Valdés-Muñoz, M. Á., and Ñeco, R. P. (2000).
Stable encoding of finite-state machines in discrete-time recurrent neural nets with sigmoid units.
Neural Computation, 12(9):2129-2174.

Casey, M. (1996).
The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.
Neural Computation, 8(6):1135-1178.

Cauwenberghs, G. (1993).
A fast-stochastic error-descent algorithm for supervised learning and optimization.
In Advances in Neural Information Processing Systems 5, pages 244-251, San Mateo, CA. Morgan-Kaufmann.

Cauwenberghs, G. (1996).
An analog VLSI recurrent neural network learning a continuous-time trajectory.
IEEE Transactions on Neural Networks, 7(2):346-361.

Chalmers, D. J. (1990).
Syntactic transformations on distributed representations.
Connection Science, pages 53-62.

Chen, T.-B., Lin, K. H., and Soo, V.-W. (1997).
Training recurrent neural networks to learn lexical encoding and thematic role assignment in parsing Mandarin Chinese sentences.
Neurocomputing, 15(3):383-409.

Chen, W.-Y., Liao, Y.-F., and Chen, S.-H. (1995).
Speech recognition with hierarchical recurrent neural networks.
Pattern Recognition, 28(6):795-805.

Cheng, Y., Karjala, T. W., and Himmelblau, D. M. (1995).
Identification of nonlinear dynamic processes with unknown and variable dead time using an internal recurrent neural network.
Ind. Eng. Chem. Res., 34:1735-1742.

Chiu, C.-C. and Shanblatt, M. A. (1995).
Human-like dynamic programming neural networks for dynamic time warping speech recognition.
Int. J. Neural Syst., 6(1):79-89.

Chomsky, N. (1965).
Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

Chovan, T., Catfolis, T., and Meert, K. (1994).
Process control using recurrent neural networks.
In 2nd IFAC Workshop on Computer Software Structures Integrating AI/KBS System in Process Control.

Chovan, T., Catfolis, T., and Meert, K. (1996).
Neural network architecture for process control based on the RTRL algorithm.
AIChE Journal, 42(2):493-502.

Chrisman, L. (1991).
Learning recursive distributed representations for holistic computation.
Connection Science, 3(4):345-366.

Cid-Sueiro, J., Artes-Rodriguez, A., and Figueiras-Vidal, A. R. (1994).
Recurrent radial basis function networks for optimal symbol-by-symbol equalization.
Signal Processing, 40:53-63.

Cid-Sueiro, J. and Figueiras-Vidal, A. R. (1993).
Recurrent radial basis function networks for optimal blind equalization.
In Neural Networks for Processing III: Proceedings of the 1993 IEEE-SP Workshop, pages 562-571.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989).
Finite state automata and simple recurrent networks.
Neural Computation, 1(3):372-381.

Clouse, D., Giles, C., Horne, B., and Cottrell, G. (1994).
Learning large debruijn automata with feed-forward neural networks.
Technical Report CS94-398, Computer Science and Engineering, University of California at San Diego, La Jolla, CA.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997a).
Representation and induction of finite state machines using time-delay neural networks.
In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9, page 403. The MIT Press.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997b).
Time-delay neural networks: Representation and induction of finite-state machines.
IEEE Transactions on Neural Networks, 8(5):1065-1070.

Connor, J. T. and Martin, R. D. (1994).
Recurrent neural networks and robust time series prediction.
IEEE Trans. Neural Networks, 5(2):240-254.

Das, S. and Das, R. (1991).
Induction of discrete state-machine by stabilizing a continuous recurrent network using clustering.
Computer Science and Informatics, 21(2):35-40.
Special Issue on Neural Computing.

Das, S. and Mozer, M. (1994).
A unified gradient-descent/clustering architecture for finite state machine induction.
In Cowan, J., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6, pages 19-26. San Mateo, CA: Morgan Kaufmann.

Das, S. and Mozer, M. (1998).
Dynamic on-line clustering and state extraction: an approach to symbolic learning.
Neural Networks, 11(1):53-64.

Dertouzos, M. (1965).
Threshold Logic: A Synthesis Approach.
MIT Press, Cambridge, MA.

Draye, J., Pavisic, D., Cheron, G., and Libert, G. (1995).
Adaptive time constants improve the prediction capability of recurrent neural networks.
Neural Processing Letters, 2(3):12-16.

Dreider, J. F., Claridge, D. E., Curtiss, P., Dodier, R., Haberl, J. S., and Krarti, M. (1995).
Building energy use prediction and system identification using recurrent neural networks.
Journal of Solar Energy Engineering, 117:161-166.

Elman, J. (1991).
Distributed representations, simple recurrent networks, and grammatical structure.
Machine Learning, 7(2/3):195-226.

Elman, J. L. (1990).
Finding structure in time.
Cognitive Science, 14:179-211.

Fahlman, S. E. (1991).
The recurrent cascade-correlation architecture.
In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 3, pages 190-196. Morgan Kaufmann, Denver, CO.

Forcada, M. L. and Carrasco, R. C. (1995).
Learning the initial state of a second-order recurrent neural network during regular-language inference.
Neural Computation, 7(5):923-930.

Forcada, M. L. and Carrasco, R. C. (2001).
Simple stable encodings of finite-state machines in dynamic recurrent networks, pages 103-127.
IEEE Press.

Forcada, M. L. and Ñeco, R. P. (1997).
Recursive hetero-associative memories for translation.
In Mira, J., Moreno-Díaz, R., and Cabestany, J., editors, Biological and Artificial Computation: From Neuroscience to Technology (Proceedings of the 1997 International Work-conference on Artificial and Natural Neural Networks), volume 1240 of Lecture Notes in Computer Science, pages 453-462, Berlin. Springer-Verlag.

Frasconi, P., Gori, M., Maggini, M., and Soda, G. (1996).
Representation of finite-state automata in recurrent radial basis function networks.
Machine Learning, 23:5-32.

Gilbert, E. N. (1954).
Lattice theoretic properties of frontal switching functions.
Journal of Math. and Physics, 33:57-67.

Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990).
Higher order recurrent networks & grammatical inference.
In Touretzky, D., editor, Advances in Neural Information Processing Systems 2, pages 380-387, San Mateo, CA. Morgan Kaufmann.

Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., and Goudreau, M. W. (1995).
Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution.
IEEE Transactions on Neural Networks, 6(4):829-836.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C. (1992).
Learning and extracted finite state automata with second-order recurrent neural networks.
Neural Computation, 4(3):393-405.

Gori, M., Bengio, Y., and De Mori, R. (1989).
BPS: A learning algorithm for capturing the dynamical nature of speech.
In Proceedings of the IEEE-IJCNN89, Washington.

Gori, M., Maggini, M., Martinelli, E., and Soda, G. (1998).
Inductive inference from noisy examples using the hybrid finite state filter.
IEEE Transactions on Neural Networks, 9(3):571-575.

Goudreau, M., Giles, C., Chakradhar, S., and Chen, D. (1994).
First-order vs. second-order single layer recurrent neural networks.
IEEE Transactions on Neural Networks, 5(3):511-513.

Haykin, S. (1998).
Neural Networks - A Comprehensive Foundation (2nd. ed.).
Prentice-Hall, Upper Saddle River, NJ.

Haykin, S. and Li, L. (1995).
Nonlinear adaptive prediction of nonstationary signals.
IEEE Transactions on Signal Processing, 43(2):526-535.

Hebb, D. O. (1949).
The Organization of Behavior.
Wiley.

Hertz, J., Krogh, A., and Palmer, R. G. (1991).
Introduction to the Theory of Neural Computation.
Addison-Wesley Publishing Company, Inc., Redwood City, CA.

Hopcroft, J. E. and Ullman, J. D. (1979).
Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading, MA.

Hopfield, J. J. (1982).
Neural networks and physical systems with emergent computational abilities.
Proceedings of the National Academy of Sciences, 79:2554.

Horne, B. G. and Hush, D. R. (1996).
Bounds on the complexity of recurrent neural network implementations of finite state machines.
Neural Networks, 9(2):243-252.

Hornik, K., Stinchcombe, M., and White, H. (1989).
Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359-366.

Hubel, D. H. and Wiesel, T. N. (1959).
Receptive fields of single neurons in the cat's striate cortex.
Journal of Physiology, 148:574-591.

Hush, D. and Horne, B. (1993).
Progress in supervised neural networks.
IEEE Signal Processing Magazine, 10(1):8-39.

Ifeachor, E. C. and Jervis, B. W. (1994).
Digital Signal Processing: a practical approach.
Addison-Wesley, Wokingham, U.K.

Irving M. Copi, Calvin C. Elgot, J. B. W. (1958).
Realization of events by logical nets.
Journal of the ACM, 5(2):181-186.

Janacek, G. and Swift, L. (1993).
Time series: forecasting, simulation, applications.
Ellis Horwood, New York, NY.

Jordan, M. (1986).
Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science, University of California at San Diego, La Jolla, CA.

Kechriotis, G., Zervas, E., and Manolakos, E. S. (1994).
Using recurrent neural networks for adaptive communication channel equalization.
IEEE Transactions on Neural Networks, 5(2):267-278.

Kleene, S. (1956).
Representation of events in nerve nets and finite automata.
In Shannon, C. and McCarthy, J., editors, Automata Studies, pages 3-42. Princeton University Press, Princeton, N.J.

Kohavi, Z. (1978).
Switching and Finite Automata Theory.
McGraw-Hill, Inc., New York, NY, second edition.

Kohonen, T. (1974).
An adaptive associative memory principle.
IEEE Transactions on Computers, C-23:444-445.

Kolen, J. F. (1994).
Fool's gold: Extracting finite state machines from recurrent network dynamics.
In Cowan, J. D., Tesauro, G., , and Alspector, J., editors, Advances in Neural Information Processing Systems 6, pages 501-508, San Mateo, CA. Morgan Kaufmann.

Kremer, S. C. (1995).
On the computational power of Elman-style recurrent networks.
IEEE Transactions on Neural Networks, 6(4):1000-1004.

Kremer, S. C. (1996a).
Comments on ``constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution''.
IEEE Transactions on Neural Networks, 7(4):1047-1051.
includes a reply by Dong Chen and C. Lee Giles.

Kremer, S. C. (1996b).
Finite state automata that recurrent cascade-correlation cannot represent.
In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in Neural Information Processing Systems 6, Cambridge, Massachusetts. MIT Press.

Kremer, S. C. (1999).
Identification of a specific limitation on local-feedback recurrent networks acting as mealy-moore machines.
IEEE Transactions on Neural Networks, 10(2):433-438.

Kuhn, G., Watrous, R. L., and Ladendorf, B. (1990).
Connected recognition with a recurrent network.
Speech Communication, 9:41-48.

Kwasny, S. C. and Kalman, B. L. (1995).
Tail-recursive distributed representations and simple recurrent networks.
Connection Science, 7(1):61-80.

Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990).
A time-delay neural network architecture for isolated word recognition.
Neural Networks, 3:23-44.

Lawrence, S., Giles, C. L., and Fong, S. (1996).
Can recurrent neural networks learn natural language grammars?
In Proceedings of ICNN'96, pages 1853-1858.

Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. (1959).
What the frog's eye tells the frog's brain.
Proceedings of IRE, 47:1940-1959.

Lewis, H. R. and Papadimitriou, C. H. (1981).
Elements of the theory of computation.
Prentice-Hall, Englewood Cliffs, N.J.

Li, C. J., Yan, L., and Chbat, N. W. (1995).
Powell's method applied to learning neural control of three unknown dynamic systems.
Optimal Control Applications & Methods, 16:251-262.

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996).
Learning long-term dependencies in narx recurrent neural networks.
IEEE Transactions on Neural Networks, 7(6):1329-1338.

Manolios, P. and Fanelli, R. (1994).
First order recurrent neural networks and deterministic finite state automata.
Neural Computation, 6(6):1154-1172.

Markov, A. A. (1958).
On the inversion complexity of system of functions.
Journal of the ACM, 5(4):331-334.

McCarthy, J. (1956).
The inversion of functions defined by Turing machines.
In Shannon, C. E. and McCarthy, J., editors, Automata Studies, pages 177-181. Princeton University Press, Princeton, N.J.

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group (1986).
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 2.
MIT Press, Cambridge.

McCulloch, W. S. (1959).
Agathe tyche: of nervous nets -- the lucky reckoners.
In Mechanization of Thought Processes 2, pages 611-634. H.M. Stationery Office, London, UK.

McCulloch, W. S. (1960).
The reliability of biological systems.
In Self-Organizing Systems, pages 264-281. Pergamon Press.

McCulloch, W. S. and Pitts, W. H. (1943).
A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115-133.

Minsky, M. (1956).
Some universal elements for finite automata.
In Shannon, C. E. and McCarthy, J., editors, Automata Studies, pages 117-128. Princeton University Press, Princeton, N.J.

Minsky, M. (1967).
Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Englewood Cliffs, NJ.
Ch.: Neural Networks. Automata Made up of Parts.

Minsky, M. and Papert, S. (1969).
Perceptrons.
MIT Press, Cambridge, MA.

Minsky, M. L. (1959).
Some methods of heuristic programming and artificial intelligence.
In Proc. Symposium on the Mechanization of Intelligence, pages 3-36, London, UK. H.M. Stationery Office.

Mitra, S. K. and Kaiser, J. F., editors (1993).
Handbook for digital signal processing.
Wiley, New York, N.Y.

Moore, E. F. and Shannon, C. E. (1956).
Reliable circuits using less reliable relays.
Journal of the Franklin Institute, 262:191-208, 291-297.

Mozer, M. (1989).
A focused backpropagation algorithm for temporal pattern processing.
Complex Systems, 3(4):349-381.

Mozer, M. C. and Das, S. (1993).
A connectionist chunker that induces the structure of context-free languages.
In Hanson, S. J., Cowan, J. D., and Giles, C. L., editors, Advances in Neural Information Processing Systems 5, San Mateo, CA. Morgan Kaufmann Publishers.

Narendra, K. S. and Parthasarathy, K. (1990).
Identification and control of dynamical systems using neural networks.
IEEE Transactions on Neural Networks, 1:4-27.

Ñeco, R. P. and Forcada, M. L. (1997).
Asynchronous translations with recurrent neural nets.
In Proceedings of the International Conference on Neural Networks ICNN'97, volume 4, pages 2535-2540.
Houston, Texas, June 8-12, 1997.

Nerrand, O., Roussel-Gagot, P., Urbani, D., Personnaz, L., and Dreyfus, G. (1994).
Training recurrent neural networks: Why and how? an illustration in dynamical process modeling.
IEEE Transactions on Neural Networks, 5(2):178-184.

Omlin, C. W. and Giles, C. L. (1996a).
Constructing deterministic finite-state automata in recurrent neural networks.
Journal of the ACM, 43(6):937-972.

Omlin, C. W. and Giles, C. L. (1996b).
Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants.
Neural Computation, 8:675-696.

Oppenheim, A. V. and Schafer, R. W. (1989).
Discrete-time signal processing.
Prentice-Hall, Englewood Cliffs, NJ.

Ortiz-Fuentes, J. D. and Forcada, M. L. (1997).
A comparison between recurrent neural network architectures for digital equalization.
In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 4, pages 3281-3284.

Parberry, I. (1994).
Circuit Complexity and Neural Networks.
MIT Press, Cambridge, Mass.

Parisi, R., Claudio, E. D. D., Orlandi, G., and Rao, B. D. (1997).
Fast adaptive digital equalization by recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2731-2739.

Pearlmutter, B. A. (1995).
Gradient calculations for dynamic recurrent neural networks: a survey.
IEEE Transactions on Neural Networks, 6(5):1212-1228.

Perrin, D. (1990).
Finite automata.
In van Leeuwen, J., editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics. The MIT Press, Cambridge, MA.

Pineda, F. J. (1987).
Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59(19):2229-2232.

Pollack, J. (1991).
The induction of dynamical recognizers.
Machine Learning, 7(2/3):227-252.

Pollack, J. B. (1990).
Recursive distributed representations.
Artificial Intelligence, 46:77-105.

Puskorius, G. V. and Feldkamp, L. A. (1994).
Neurocontrol of nonlinear dynamical systems with kalman filter-trained recurrent networks.
IEEE Transactions on Neural Networks, 5(2):279-297.

Qian, N. and Sejnowski, T. (1988).
Predicting the secondary structure of globular proteins using neural network models.
Journal of Molecular Biology, 202:865-884.

Rashevsky, N. (1938).
Mathematical Biophysics.
Dover, Chicago.
Revised edition, 1960.

Rashevsky, N. (1940).
Advances and Application of Mathematical Biology.
University of Chicago Press, Chicago.

Robinson, T. (1994).
An application of recurrent nets to phone probability estimation.
IEEE Transactions on Neural Networks, 5(2):298-305.

Robinson, T. and Fallside, F. (1991).
A recurrent error propagation network speech recognition system.
Computer Speech and Language, 5:259-274.

Rosenblatt, F. (1962).
A comparison of several perceptron models.
In Self-Organizing Systems. Spartan Books, Washington, DC.

Rumelhart, D., Hinton, G., and Williams, R. (1986).
Learning internal representations by error propagation.
In Parallel Distributed Processing, chapter 8. MIT Press, Cambridge, MA.

Salomaa, A. (1973).
Formal Languages.
Academic Press, New York, NY.

Sejnowski, T. and Rosenberg, C. (1987).
Parallel networks that learn to pronounce english text.
Complex Systems, 1:145-168.

Shannon, C. (1949).
The synthesis of two-terminal switching circuits.
Bell System Technical Journal, 28:59-98.

Siegelmann, H., Horne, B., and Giles, C. (1996).
Computational capabilities of recurrent NARX neural networks.
IEEE Trans. on Systems, Man and Cybernetics, 26(6).

Siegelmann, H. and Sontag, E. (1991).
Turing computability with neural nets.
Applied Mathematics Letters, 4(6):77-80.

Siegelmann, H. T. (1995).
Computation beyond the Turing limit.
Science, 268:545-548.

Šíma, J. (1997).
Analog stable simulation of discrete neural networks.
Neural Network World, 7:679-686.

Siu, K.-Y., Roychowdhury, V., and Kailath, T. (1995).
Discrete Neural Computation. A Theoretical Foundation.
Prentice-Hall, Englewood Cliffs.

Sluijter, R., Wuppermann, F., Taori, R., and Kathmann, E. (1995).
State of the art and trends in speech coding.
Philips Journal of Research, 49(4):455-488.

Solomonoff, R. (1964).
A formal theory of inductive inference.
Information and Control, 7(1-22):224-254.

Sperduti, A. (1994).
Labelling recursive auto-associative memory.
Connection Science, 6(4):429-459.

Sperduti, A. (1995).
Stability properties of the labeling recursive auto-associative memory.
IEEE Transactions on Neural Networks, 6(6):1452-1460.

Sperduti, A. and Starita, A. (1995).
A neural network model for associative access of structures.
International Journal of Neural Systems, 6:189-194.

Stiles, B. W. and Ghosh, J. (1997).
Habituation based neural networks for spatio-temporal classification.
Neurocomputing, 15:273-307.

Stiles, B. W., Sandberg, I. W., and Ghosh, J. (1997).
Complete memory structures for approximating nonlinear discrete-time mappings.
IEEE Trans. on Neural Networks, 8(6):1-14.

Stolcke, A. and Wu, D. (1992).
Tree matching with recursive distributed representations.
Technical Report TR-92-025, International Computer Science Institute, Berkeley, CA.

Tino, P. and Sajda, J. (1995).
Learning and extracting initial Mealy automata with a modular neural network model.
Neural Computation, 7(4).

Tomita, M. (1982).
Dynamic construction of finite-state automata from examples using hill-climbing.
In Proceedings of the Fourth Annual Cognitive Science Conference, pages 105-108, Ann Arbor, Mi.

Tsoi, A. C. and Back, A. (1997).
Discrete time recurrent neural network architectures: a unifying review.
Neurocomputing, 15:183-223.

Turing, A. M. (1936).
On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230-265.

Unnikrishnan, K. P. and Venugopal, K. P. (1994).
Alopex: a correlation-based learning algorithm for feedforward and recurrent neural networks.
Neural Computation, 6(3):469-490.

von Neumann, J. (1956).
Probabilistic logics and the synthesis of reliable organisms from unreliable components.
In Shannon, C. and McCarthy, J., editors, Automata Studies, pages 43-98. Princeton University Press, Princeton.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989).
Phoneme recognition using time-delay neural networks.
IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3):328-339.

Wang, H. (1957).
A variant to Turing's theory of computing machines.
Journal of the ACM, 4(1).

Wang, J. and Wu, G. (1995).
Recurrent neural networks for synthesizing linear control systems via pole placement.
International Journal of Systems Science, 26(12):2369-2382.

Wang, J. and Wu, G. (1996).
A multilayer recurrent neural network for on-line synthesis of minimum-norm linear feedback control systems via pole assignment.
Automatica, 32(3):435-442.

Watrous, R. L. and Kuhn, G. M. (1992).
Induction of finite-state languages using second-order recurrent networks.
Neural Computation, 4(3):406-414.

Watrous, R. L., Ladendorf, B., and Kuhn, G. (1990).
Complete gradient optimization of a recurrent network applied to /b/, /d/, /g/ discrimination.
Journal of the Acoustic Society of America, 87:1301-1309.

Weigend, A. S. and Gershenfeld, N. A., editors (1993).
TIME SERIES PREDICTION: Forecasting the Future and Understanding the Past.
Addison-Wesley, Reading, MA.
Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis held in Santa Fe, New Mexico, May 14-17, 1992.

Werbos, P. J. (1974).
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
Doctoral Dissertation, Applied Mathematics, Harvard University, Boston, MA.

Werbos, P. J. (1990).
Backpropagation through time: what it does and how to do it.
Proc. IEEE, 78(10):1550-1560.

Williams, R. and Zipser, D. (1989a).
Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87-111.

Williams, R. and Zipser, D. (1989b).
A learning algorithm for continually running fully recurrent neural networks.
Neural Computation, 1(2):270-280.

Williams, R. J. (1992).
Training recurrent networks using the extended kalman filter.
In Proceedings of the 1992 International Joint Conference on Neural Networks, volume 4, pages 241-246.

Williams, R. J. and Zipser, D. (1989c).
A learning algorithm for continually running fully recurrent neural networks.
Neural Computation, 1(2):270-280.

Williams, R. J. and Zipser, D. (1995).
Gradient-based learning algorithms for recurrent networks and their computational complexity.
In Chauvin, Y. and Rumelhart, D. E., editors, Back-propagation: Theory, Architectures and Applications, chapter 13, pages 433-486. Lawrence Erlbaum Publishers, Hillsdale, N.J.

Wu, L., Niranjan, M., and Fallside, F. (1994).
Fully vector-quantised neural network-based code-excited nonlinear predictive speech coding.
Technical report, Cambridge University Engineering Department, Cambridge CB2 1PZ, U.K.
CUED/F-INFENG/TR94.

Zbikowski, R. and Dzielinski, A. (1995).
Neural approximation: A control perspective.
In Hunt, K., Irwin, G., and Warwick, K., editors, Neural Network Engineering in Dynamic Control Systems, chapter 1, pages 1-25.

Zeng, Z., Goodman, R., and Smyth, P. (1993).
Learning finite state machines with self-clustering recurrent networks.
Neural Computation, 5(6):976-990.

Zeng, Z., Goodman, R. M., and Smyth, P. (1994).
Discrete recurrent neural networks for grammatical inference.
IEEE Transactions on Neural Networks, 5(2):320-330.



Debian User 2002-01-21