Up: Neural Networks: Automata and
Previous: List of abbreviations
  Contents
  Index
-
Adali, T., Bakal, B., Sönmez, M. K., Fakory, R., and Tsaoi, C. O.
(1997).
- Modeling nuclear reactor core dynamics with recurrent neural
networks.
Neurocomputing, 15(3-4):363-381.
-
Alon, N., Dewdney, A. K., and Ott, T. J. (1991).
- Efficient simulation of finite automata by neural nets.
Journal of the Association of Computing Machinery,
38(2):495-514.
-
Alquézar, R. and Sanfeliu, A. (1995).
- An algebraic framework to represent finite state automata in
single-layer recurrent neural networks.
Neural Computation, 7(5):931-949.
-
Aussem, A., Murtagh, F., and Sarazin, M. (1995).
- Dynamical recurrent neural networks -- towards environmental time
series prediction.
International Journal of Neural Systems, 6:145-170.
-
Baltersee, J. and Chambers, J. (1997).
- Non-linear adaptive prediction of speech with a pipelined recurrent
neural network and a linearised recursive least squares algorithm.
In Proceedings of ECSAP'97, European Conference on Signal
Analysis & Prediction.
-
Bengio, Y., Simard, P., and Frasconi, P. (1994).
- Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157-166.
-
Blair, A. and Pollack, J. B. (1997).
- Analysis of dynamical recognizers.
Neural Computation, 9(5):1127-1142.
-
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994).
- Time series analysis: forecasting and control.
Prentice-Hall, Englewood Cliffs, NJ.
3rd. ed.
-
Bradley, M. J. and Mars, P. (1995).
- Application of recurrent neural networks to communication channel
equalization.
In IEEE International Conference on Acoustics, Speech and Signal
Processing, volume 5, pages 3399-3402.
-
Bridle, J. S. (1990).
- Alphanets: A recurrent neural network architecture with a hidden
Markov model interpretation.
Speech Communication, 9:83-92.
-
Bullock, T. H. and Horridge, A. G. (1965).
- Structure and Function in The Nervous System of Invertebrates.
W.H. Freeman and Co., New York, NY.
-
Bulsari, A. B. and Saxén, H. (1995).
- A recurrent network for modeling noisy temporal sequences.
Neurocomputing, 7(1):29-40.
-
Burks, A. W. and Wang, H. (1957).
- The logic of automata.
Journal of the ACM, 4:193-218 and 279-297.
-
Carrasco, R. C., Forcada, M. L., and Santamaría, L. (1996).
- Inferring stochastic regular grammars with recurrent neural networks.
In Miclet, L. and de la Higuera, C., editors, Grammatical
Inference: Learning Syntax from Sentences, pages 274-281, Berlin.
Springer-Verlag.
Proceedings of the Third International Colloquium on Grammatical
Inference, Montpellier, France, 25-27 September 1996.
-
Carrasco, R. C., Forcada, M. L., Valdés-Muñoz, M. Á., and
Ñeco, R. P. (2000).
- Stable encoding of finite-state machines in discrete-time recurrent
neural nets with sigmoid units.
Neural Computation, 12(9):2129-2174.
-
Casey, M. (1996).
- The dynamics of discrete-time computation, with application to
recurrent neural networks and finite state machine extraction.
Neural Computation, 8(6):1135-1178.
-
Cauwenberghs, G. (1993).
- A fast-stochastic error-descent algorithm for supervised learning and
optimization.
In Advances in Neural Information Processing Systems 5, pages
244-251, San Mateo, CA. Morgan-Kaufmann.
-
Cauwenberghs, G. (1996).
- An analog VLSI recurrent neural network learning a
continuous-time trajectory.
IEEE Transactions on Neural Networks, 7(2):346-361.
-
Chalmers, D. J. (1990).
- Syntactic transformations on distributed representations.
Connection Science, pages 53-62.
-
Chen, T.-B., Lin, K. H., and Soo, V.-W. (1997).
- Training recurrent neural networks to learn lexical encoding and
thematic role assignment in parsing Mandarin Chinese sentences.
Neurocomputing, 15(3):383-409.
-
Chen, W.-Y., Liao, Y.-F., and Chen, S.-H. (1995).
- Speech recognition with hierarchical recurrent neural networks.
Pattern Recognition, 28(6):795-805.
-
Cheng, Y., Karjala, T. W., and Himmelblau, D. M. (1995).
- Identification of nonlinear dynamic processes with unknown and
variable dead time using an internal recurrent neural network.
Ind. Eng. Chem. Res., 34:1735-1742.
-
Chiu, C.-C. and Shanblatt, M. A. (1995).
- Human-like dynamic programming neural networks for dynamic time
warping speech recognition.
Int. J. Neural Syst., 6(1):79-89.
-
Chomsky, N. (1965).
- Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.
-
Chovan, T., Catfolis, T., and Meert, K. (1994).
- Process control using recurrent neural networks.
In 2nd IFAC Workshop on Computer Software Structures Integrating
AI/KBS System in Process Control.
-
Chovan, T., Catfolis, T., and Meert, K. (1996).
- Neural network architecture for process control based on the
RTRL algorithm.
AIChE Journal, 42(2):493-502.
-
Chrisman, L. (1991).
- Learning recursive distributed representations for holistic
computation.
Connection Science, 3(4):345-366.
-
Cid-Sueiro, J., Artes-Rodriguez, A., and Figueiras-Vidal, A. R. (1994).
- Recurrent radial basis function networks for optimal symbol-by-symbol
equalization.
Signal Processing, 40:53-63.
-
Cid-Sueiro, J. and Figueiras-Vidal, A. R. (1993).
- Recurrent radial basis function networks for optimal blind
equalization.
In Neural Networks for Processing III: Proceedings of the 1993
IEEE-SP Workshop, pages 562-571.
-
Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989).
- Finite state automata and simple recurrent networks.
Neural Computation, 1(3):372-381.
-
Clouse, D., Giles, C., Horne, B., and Cottrell, G. (1994).
- Learning large debruijn automata with feed-forward neural networks.
Technical Report CS94-398, Computer Science and Engineering,
University of California at San Diego, La Jolla, CA.
-
Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997a).
- Representation and induction of finite state machines using
time-delay neural networks.
In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9, page 403. The
MIT Press.
-
Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997b).
- Time-delay neural networks: Representation and induction of
finite-state machines.
IEEE Transactions on Neural Networks, 8(5):1065-1070.
-
Connor, J. T. and Martin, R. D. (1994).
- Recurrent neural networks and robust time series prediction.
IEEE Trans. Neural Networks, 5(2):240-254.
-
Das, S. and Das, R. (1991).
- Induction of discrete state-machine by stabilizing a continuous
recurrent network using clustering.
Computer Science and Informatics, 21(2):35-40.
Special Issue on Neural Computing.
-
Das, S. and Mozer, M. (1994).
- A unified gradient-descent/clustering architecture for finite state
machine induction.
In Cowan, J., Tesauro, G., and Alspector, J., editors, Advances
in Neural Information Processing Systems 6, pages 19-26. San Mateo, CA:
Morgan Kaufmann.
-
Das, S. and Mozer, M. (1998).
- Dynamic on-line clustering and state extraction: an approach to
symbolic learning.
Neural Networks, 11(1):53-64.
-
Dertouzos, M. (1965).
- Threshold Logic: A Synthesis Approach.
MIT Press, Cambridge, MA.
-
Draye, J., Pavisic, D., Cheron, G., and Libert, G. (1995).
- Adaptive time constants improve the prediction capability of
recurrent neural networks.
Neural Processing Letters, 2(3):12-16.
-
Dreider, J. F., Claridge, D. E., Curtiss, P., Dodier, R., Haberl, J. S., and
Krarti, M. (1995).
- Building energy use prediction and system identification using
recurrent neural networks.
Journal of Solar Energy Engineering, 117:161-166.
-
Elman, J. (1991).
- Distributed representations, simple recurrent networks, and
grammatical structure.
Machine Learning, 7(2/3):195-226.
-
Elman, J. L. (1990).
- Finding structure in time.
Cognitive Science, 14:179-211.
-
Fahlman, S. E. (1991).
- The recurrent cascade-correlation architecture.
In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 3, pages 190-196. Morgan
Kaufmann, Denver, CO.
-
Forcada, M. L. and Carrasco, R. C. (1995).
- Learning the initial state of a second-order recurrent neural network
during regular-language inference.
Neural Computation, 7(5):923-930.
-
Forcada, M. L. and Carrasco, R. C. (2001).
- Simple stable encodings of finite-state machines in dynamic
recurrent networks, pages 103-127.
IEEE Press.
-
Forcada, M. L. and Ñeco, R. P. (1997).
- Recursive hetero-associative memories for translation.
In Mira, J., Moreno-Díaz, R., and Cabestany, J., editors, Biological and Artificial Computation: From Neuroscience to Technology
(Proceedings of the 1997 International Work-conference on Artificial and
Natural Neural Networks), volume 1240 of Lecture Notes in Computer
Science, pages 453-462, Berlin. Springer-Verlag.
-
Frasconi, P., Gori, M., Maggini, M., and Soda, G. (1996).
- Representation of finite-state automata in recurrent radial basis
function networks.
Machine Learning, 23:5-32.
-
Gilbert, E. N. (1954).
- Lattice theoretic properties of frontal switching functions.
Journal of Math. and Physics, 33:57-67.
-
Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990).
- Higher order recurrent networks & grammatical inference.
In Touretzky, D., editor, Advances in Neural Information
Processing Systems 2, pages 380-387, San Mateo, CA. Morgan Kaufmann.
-
Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., and Goudreau,
M. W. (1995).
- Constructive learning of recurrent neural networks: limitations of
recurrent cascade correlation and a simple solution.
IEEE Transactions on Neural Networks, 6(4):829-836.
-
Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C.
(1992).
- Learning and extracted finite state automata with second-order
recurrent neural networks.
Neural Computation, 4(3):393-405.
-
Gori, M., Bengio, Y., and De Mori, R. (1989).
- BPS: A learning algorithm for capturing the dynamical nature of
speech.
In Proceedings of the IEEE-IJCNN89, Washington.
-
Gori, M., Maggini, M., Martinelli, E., and Soda, G. (1998).
- Inductive inference from noisy examples using the hybrid finite state
filter.
IEEE Transactions on Neural Networks, 9(3):571-575.
-
Goudreau, M., Giles, C., Chakradhar, S., and Chen, D. (1994).
- First-order vs. second-order single layer recurrent neural networks.
IEEE Transactions on Neural Networks, 5(3):511-513.
-
Haykin, S. (1998).
- Neural Networks - A Comprehensive Foundation (2nd. ed.).
Prentice-Hall, Upper Saddle River, NJ.
-
Haykin, S. and Li, L. (1995).
- Nonlinear adaptive prediction of nonstationary signals.
IEEE Transactions on Signal Processing, 43(2):526-535.
-
Hebb, D. O. (1949).
- The Organization of Behavior.
Wiley.
-
Hertz, J., Krogh, A., and Palmer, R. G. (1991).
- Introduction to the Theory of Neural Computation.
Addison-Wesley Publishing Company, Inc., Redwood City, CA.
-
Hopcroft, J. E. and Ullman, J. D. (1979).
- Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading, MA.
-
Hopfield, J. J. (1982).
- Neural networks and physical systems with emergent computational
abilities.
Proceedings of the National Academy of Sciences, 79:2554.
-
Horne, B. G. and Hush, D. R. (1996).
- Bounds on the complexity of recurrent neural network implementations
of finite state machines.
Neural Networks, 9(2):243-252.
-
Hornik, K., Stinchcombe, M., and White, H. (1989).
- Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359-366.
-
Hubel, D. H. and Wiesel, T. N. (1959).
- Receptive fields of single neurons in the cat's striate cortex.
Journal of Physiology, 148:574-591.
-
Hush, D. and Horne, B. (1993).
- Progress in supervised neural networks.
IEEE Signal Processing Magazine, 10(1):8-39.
-
Ifeachor, E. C. and Jervis, B. W. (1994).
- Digital Signal Processing: a practical approach.
Addison-Wesley, Wokingham, U.K.
-
Irving M. Copi, Calvin C. Elgot, J. B. W. (1958).
- Realization of events by logical nets.
Journal of the ACM, 5(2):181-186.
-
Janacek, G. and Swift, L. (1993).
- Time series: forecasting, simulation, applications.
Ellis Horwood, New York, NY.
-
Jordan, M. (1986).
- Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science,
University of California at San Diego, La Jolla, CA.
-
Kechriotis, G., Zervas, E., and Manolakos, E. S. (1994).
- Using recurrent neural networks for adaptive communication channel
equalization.
IEEE Transactions on Neural Networks, 5(2):267-278.
-
Kleene, S. (1956).
- Representation of events in nerve nets and finite automata.
In Shannon, C. and McCarthy, J., editors, Automata Studies,
pages 3-42. Princeton University Press, Princeton, N.J.
-
Kohavi, Z. (1978).
- Switching and Finite Automata Theory.
McGraw-Hill, Inc., New York, NY, second edition.
-
Kohonen, T. (1974).
- An adaptive associative memory principle.
IEEE Transactions on Computers, C-23:444-445.
-
Kolen, J. F. (1994).
- Fool's gold: Extracting finite state machines from recurrent network
dynamics.
In Cowan, J. D., Tesauro, G., , and Alspector, J., editors, Advances in Neural Information Processing Systems 6, pages 501-508, San
Mateo, CA. Morgan Kaufmann.
-
Kremer, S. C. (1995).
- On the computational power of Elman-style recurrent networks.
IEEE Transactions on Neural Networks, 6(4):1000-1004.
-
Kremer, S. C. (1996a).
- Comments on ``constructive learning of recurrent neural networks:
limitations of recurrent cascade correlation and a simple solution''.
IEEE Transactions on Neural Networks, 7(4):1047-1051.
includes a reply by Dong Chen and C. Lee Giles.
-
Kremer, S. C. (1996b).
- Finite state automata that recurrent cascade-correlation cannot
represent.
In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances
in Neural Information Processing Systems 6, Cambridge, Massachusetts. MIT
Press.
-
Kremer, S. C. (1999).
- Identification of a specific limitation on local-feedback recurrent
networks acting as mealy-moore machines.
IEEE Transactions on Neural Networks, 10(2):433-438.
-
Kuhn, G., Watrous, R. L., and Ladendorf, B. (1990).
- Connected recognition with a recurrent network.
Speech Communication, 9:41-48.
-
Kwasny, S. C. and Kalman, B. L. (1995).
- Tail-recursive distributed representations and simple recurrent
networks.
Connection Science, 7(1):61-80.
-
Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990).
- A time-delay neural network architecture for isolated word
recognition.
Neural Networks, 3:23-44.
-
Lawrence, S., Giles, C. L., and Fong, S. (1996).
- Can recurrent neural networks learn natural language grammars?
In Proceedings of ICNN'96, pages 1853-1858.
-
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. (1959).
- What the frog's eye tells the frog's brain.
Proceedings of IRE, 47:1940-1959.
-
Lewis, H. R. and Papadimitriou, C. H. (1981).
- Elements of the theory of computation.
Prentice-Hall, Englewood Cliffs, N.J.
-
Li, C. J., Yan, L., and Chbat, N. W. (1995).
- Powell's method applied to learning neural control of three unknown
dynamic systems.
Optimal Control Applications & Methods, 16:251-262.
-
Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996).
- Learning long-term dependencies in narx recurrent neural networks.
IEEE Transactions on Neural Networks, 7(6):1329-1338.
-
Manolios, P. and Fanelli, R. (1994).
- First order recurrent neural networks and deterministic finite state
automata.
Neural Computation, 6(6):1154-1172.
-
Markov, A. A. (1958).
- On the inversion complexity of system of functions.
Journal of the ACM, 5(4):331-334.
-
McCarthy, J. (1956).
- The inversion of functions defined by Turing machines.
In Shannon, C. E. and McCarthy, J., editors, Automata Studies,
pages 177-181. Princeton University Press, Princeton, N.J.
-
McClelland, J. L., Rumelhart, D. E., and the PDP Research Group (1986).
- Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, volume 2.
MIT Press, Cambridge.
-
McCulloch, W. S. (1959).
- Agathe tyche: of nervous nets -- the lucky reckoners.
In Mechanization of Thought Processes 2, pages 611-634. H.M.
Stationery Office, London, UK.
-
McCulloch, W. S. (1960).
- The reliability of biological systems.
In Self-Organizing Systems, pages 264-281. Pergamon Press.
-
McCulloch, W. S. and Pitts, W. H. (1943).
- A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115-133.
-
Minsky, M. (1956).
- Some universal elements for finite automata.
In Shannon, C. E. and McCarthy, J., editors, Automata Studies,
pages 117-128. Princeton University Press, Princeton, N.J.
-
Minsky, M. (1967).
- Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Englewood Cliffs, NJ.
Ch.: Neural Networks. Automata Made up of Parts.
-
Minsky, M. and Papert, S. (1969).
- Perceptrons.
MIT Press, Cambridge, MA.
-
Minsky, M. L. (1959).
- Some methods of heuristic programming and artificial intelligence.
In Proc. Symposium on the Mechanization of Intelligence, pages
3-36, London, UK. H.M. Stationery Office.
-
Mitra, S. K. and Kaiser, J. F., editors (1993).
- Handbook for digital signal processing.
Wiley, New York, N.Y.
-
Moore, E. F. and Shannon, C. E. (1956).
- Reliable circuits using less reliable relays.
Journal of the Franklin Institute, 262:191-208, 291-297.
-
Mozer, M. (1989).
- A focused backpropagation algorithm for temporal pattern processing.
Complex Systems, 3(4):349-381.
-
Mozer, M. C. and Das, S. (1993).
- A connectionist chunker that induces the structure of context-free
languages.
In Hanson, S. J., Cowan, J. D., and Giles, C. L., editors, Advances in Neural Information Processing Systems 5, San Mateo, CA. Morgan
Kaufmann Publishers.
-
Narendra, K. S. and Parthasarathy, K. (1990).
- Identification and control of dynamical systems using neural
networks.
IEEE Transactions on Neural Networks, 1:4-27.
-
Ñeco, R. P. and Forcada, M. L. (1997).
- Asynchronous translations with recurrent neural nets.
In Proceedings of the International Conference on Neural
Networks ICNN'97, volume 4, pages 2535-2540.
Houston, Texas, June 8-12, 1997.
-
Nerrand, O., Roussel-Gagot, P., Urbani, D., Personnaz, L., and Dreyfus, G.
(1994).
- Training recurrent neural networks: Why and how? an illustration in
dynamical process modeling.
IEEE Transactions on Neural Networks, 5(2):178-184.
-
Omlin, C. W. and Giles, C. L. (1996a).
- Constructing deterministic finite-state automata in recurrent neural
networks.
Journal of the ACM, 43(6):937-972.
-
Omlin, C. W. and Giles, C. L. (1996b).
- Stable encoding of large finite-state automata in recurrent neural
networks with sigmoid discriminants.
Neural Computation, 8:675-696.
-
Oppenheim, A. V. and Schafer, R. W. (1989).
- Discrete-time signal processing.
Prentice-Hall, Englewood Cliffs, NJ.
-
Ortiz-Fuentes, J. D. and Forcada, M. L. (1997).
- A comparison between recurrent neural network architectures for
digital equalization.
In IEEE International Conference on Acoustics, Speech and Signal
Processing, volume 4, pages 3281-3284.
-
Parberry, I. (1994).
- Circuit Complexity and Neural Networks.
MIT Press, Cambridge, Mass.
-
Parisi, R., Claudio, E. D. D., Orlandi, G., and Rao, B. D. (1997).
- Fast adaptive digital equalization by recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2731-2739.
-
Pearlmutter, B. A. (1995).
- Gradient calculations for dynamic recurrent neural networks: a
survey.
IEEE Transactions on Neural Networks, 6(5):1212-1228.
-
Perrin, D. (1990).
- Finite automata.
In van Leeuwen, J., editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics. The MIT Press, Cambridge,
MA.
-
Pineda, F. J. (1987).
- Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59(19):2229-2232.
-
Pollack, J. (1991).
- The induction of dynamical recognizers.
Machine Learning, 7(2/3):227-252.
-
Pollack, J. B. (1990).
- Recursive distributed representations.
Artificial Intelligence, 46:77-105.
-
Puskorius, G. V. and Feldkamp, L. A. (1994).
- Neurocontrol of nonlinear dynamical systems with kalman
filter-trained recurrent networks.
IEEE Transactions on Neural Networks, 5(2):279-297.
-
Qian, N. and Sejnowski, T. (1988).
- Predicting the secondary structure of globular proteins using neural
network models.
Journal of Molecular Biology, 202:865-884.
-
Rashevsky, N. (1938).
- Mathematical Biophysics.
Dover, Chicago.
Revised edition, 1960.
-
Rashevsky, N. (1940).
- Advances and Application of Mathematical Biology.
University of Chicago Press, Chicago.
-
Robinson, T. (1994).
- An application of recurrent nets to phone probability estimation.
IEEE Transactions on Neural Networks, 5(2):298-305.
-
Robinson, T. and Fallside, F. (1991).
- A recurrent error propagation network speech recognition system.
Computer Speech and Language, 5:259-274.
-
Rosenblatt, F. (1962).
- A comparison of several perceptron models.
In Self-Organizing Systems. Spartan Books, Washington, DC.
-
Rumelhart, D., Hinton, G., and Williams, R. (1986).
- Learning internal representations by error propagation.
In Parallel Distributed Processing, chapter 8. MIT Press,
Cambridge, MA.
-
Salomaa, A. (1973).
- Formal Languages.
Academic Press, New York, NY.
-
Sejnowski, T. and Rosenberg, C. (1987).
- Parallel networks that learn to pronounce english text.
Complex Systems, 1:145-168.
-
Shannon, C. (1949).
- The synthesis of two-terminal switching circuits.
Bell System Technical Journal, 28:59-98.
-
Siegelmann, H., Horne, B., and Giles, C. (1996).
- Computational capabilities of recurrent NARX neural networks.
IEEE Trans. on Systems, Man and Cybernetics, 26(6).
-
Siegelmann, H. and Sontag, E. (1991).
- Turing computability with neural nets.
Applied Mathematics Letters, 4(6):77-80.
-
Siegelmann, H. T. (1995).
- Computation beyond the Turing limit.
Science, 268:545-548.
-
Šíma, J. (1997).
- Analog stable simulation of discrete neural networks.
Neural Network World, 7:679-686.
-
Siu, K.-Y., Roychowdhury, V., and Kailath, T. (1995).
- Discrete Neural Computation. A Theoretical Foundation.
Prentice-Hall, Englewood Cliffs.
-
Sluijter, R., Wuppermann, F., Taori, R., and Kathmann, E. (1995).
- State of the art and trends in speech coding.
Philips Journal of Research, 49(4):455-488.
-
Solomonoff, R. (1964).
- A formal theory of inductive inference.
Information and Control, 7(1-22):224-254.
-
Sperduti, A. (1994).
- Labelling recursive auto-associative memory.
Connection Science, 6(4):429-459.
-
Sperduti, A. (1995).
- Stability properties of the labeling recursive auto-associative
memory.
IEEE Transactions on Neural Networks, 6(6):1452-1460.
-
Sperduti, A. and Starita, A. (1995).
- A neural network model for associative access of structures.
International Journal of Neural Systems, 6:189-194.
-
Stiles, B. W. and Ghosh, J. (1997).
- Habituation based neural networks for spatio-temporal classification.
Neurocomputing, 15:273-307.
-
Stiles, B. W., Sandberg, I. W., and Ghosh, J. (1997).
- Complete memory structures for approximating nonlinear discrete-time
mappings.
IEEE Trans. on Neural Networks, 8(6):1-14.
-
Stolcke, A. and Wu, D. (1992).
- Tree matching with recursive distributed representations.
Technical Report TR-92-025, International Computer Science Institute,
Berkeley, CA.
-
Tino, P. and Sajda, J. (1995).
- Learning and extracting initial Mealy automata with a modular
neural network model.
Neural Computation, 7(4).
-
Tomita, M. (1982).
- Dynamic construction of finite-state automata from examples using
hill-climbing.
In Proceedings of the Fourth Annual Cognitive Science
Conference, pages 105-108, Ann Arbor, Mi.
-
Tsoi, A. C. and Back, A. (1997).
- Discrete time recurrent neural network architectures: a unifying
review.
Neurocomputing, 15:183-223.
-
Turing, A. M. (1936).
- On computable numbers, with an application to the
Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230-265.
-
Unnikrishnan, K. P. and Venugopal, K. P. (1994).
- Alopex: a correlation-based learning algorithm for feedforward and
recurrent neural networks.
Neural Computation, 6(3):469-490.
-
von Neumann, J. (1956).
- Probabilistic logics and the synthesis of reliable organisms from
unreliable components.
In Shannon, C. and McCarthy, J., editors, Automata Studies,
pages 43-98. Princeton University Press, Princeton.
-
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989).
- Phoneme recognition using time-delay neural networks.
IEEE Transactions on Acoustics, Speech and Signal Processing,
37(3):328-339.
-
Wang, H. (1957).
- A variant to Turing's theory of computing machines.
Journal of the ACM, 4(1).
-
Wang, J. and Wu, G. (1995).
- Recurrent neural networks for synthesizing linear control systems via
pole placement.
International Journal of Systems Science, 26(12):2369-2382.
-
Wang, J. and Wu, G. (1996).
- A multilayer recurrent neural network for on-line synthesis of
minimum-norm linear feedback control systems via pole assignment.
Automatica, 32(3):435-442.
-
Watrous, R. L. and Kuhn, G. M. (1992).
- Induction of finite-state languages using second-order recurrent
networks.
Neural Computation, 4(3):406-414.
-
Watrous, R. L., Ladendorf, B., and Kuhn, G. (1990).
- Complete gradient optimization of a recurrent network applied to /b/,
/d/, /g/ discrimination.
Journal of the Acoustic Society of America, 87:1301-1309.
-
Weigend, A. S. and Gershenfeld, N. A., editors (1993).
- TIME SERIES PREDICTION: Forecasting the Future and Understanding
the Past.
Addison-Wesley, Reading, MA.
Proceedings of the NATO Advanced Research Workshop on Comparative
Time Series Analysis held in Santa Fe, New Mexico, May 14-17, 1992.
-
Werbos, P. J. (1974).
- Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences.
Doctoral Dissertation, Applied Mathematics, Harvard University,
Boston, MA.
-
Werbos, P. J. (1990).
- Backpropagation through time: what it does and how to do it.
Proc. IEEE, 78(10):1550-1560.
-
Williams, R. and Zipser, D. (1989a).
- Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87-111.
-
Williams, R. and Zipser, D. (1989b).
- A learning algorithm for continually running fully recurrent neural
networks.
Neural Computation, 1(2):270-280.
-
Williams, R. J. (1992).
- Training recurrent networks using the extended kalman filter.
In Proceedings of the 1992 International Joint Conference on
Neural Networks, volume 4, pages 241-246.
-
Williams, R. J. and Zipser, D. (1989c).
- A learning algorithm for continually running fully recurrent neural
networks.
Neural Computation, 1(2):270-280.
-
Williams, R. J. and Zipser, D. (1995).
- Gradient-based learning algorithms for recurrent networks and their
computational complexity.
In Chauvin, Y. and Rumelhart, D. E., editors, Back-propagation:
Theory, Architectures and Applications, chapter 13, pages 433-486. Lawrence
Erlbaum Publishers, Hillsdale, N.J.
-
Wu, L., Niranjan, M., and Fallside, F. (1994).
- Fully vector-quantised neural network-based code-excited nonlinear
predictive speech coding.
Technical report, Cambridge University Engineering Department,
Cambridge CB2 1PZ, U.K.
CUED/F-INFENG/TR94.
-
Zbikowski, R. and Dzielinski, A. (1995).
- Neural approximation: A control perspective.
In Hunt, K., Irwin, G., and Warwick, K., editors, Neural Network
Engineering in Dynamic Control Systems, chapter 1, pages 1-25.
-
Zeng, Z., Goodman, R., and Smyth, P. (1993).
- Learning finite state machines with self-clustering recurrent
networks.
Neural Computation, 5(6):976-990.
-
Zeng, Z., Goodman, R. M., and Smyth, P. (1994).
- Discrete recurrent neural networks for grammatical inference.
IEEE Transactions on Neural Networks, 5(2):320-330.
Debian User
2002-01-21