An Adaptive Data Replication Algorithm

OURI WOLFSON

University of lllinois, Chicago, IL and NASA/CESDIS, Goddard Space Flight
Center, Greenbelt, MD

SUSHIL JAJODIA

George Mason University, Fairfax, VA
and

YIXIU HUANG

University of Illinois, Chicago, IL

This article addresses the performance of distributed database systems. Specifically, we
present an algorithm for dynamic replication of an object in distributed systems. The
algorithm is adaptive in the sense that it changes the replication scheme of the object (i.e., the
set of processors at which the object is replicated) as changes occur in the read-write pattern of
the object (i.e., the number of reads and writes issued by each processor). The algorithm
continuously moves the replication scheme towards an optimal one. We show that the
algorithm can be combined with the concurrency control and recovery mechanisms of a
distributed database management system. The performance of the algorithm is analyzed
theoretically and experimentally. On the way we provide a lower bound on the performance of
any dynamic replication algorithm.

Categories and Subject Descriptors: H.2.4 [Database Management|: Systems—distributed
systems, transaction processing; C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications, distributed databases: C.4 [Computer Systems Organi-
zation]: Performance of Systems—design studies, measurement techniques, modeling tech-
niques, reliability and availability.

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Computer networks, dynamic data allocation, file alloca-
tion, replicated data

0. Wolfson’s research was supported in part by NSF grants IRI-90-03341, IRI 92244605, and
IRI-9408750 and AFOSR grant F49620-93-1-0059. S. Jajodia’s research was supported in part
by grant AFOSR 90-0135 and ARPA grant, administered by the Office of Naval Research
grant number N0014-92-J-4038.

Author’s addresses: O. Wolfson, Electrical Engineering and Computer Science Dept., Univ. of
Illinois, Chicago, IL 60680; email: (wolfson@eecs.uic.edu); S. Jajodia, Information and Soft-
ware Systems Engineering Dept., George Mason Univ., Fairfax, VA 22030-4444; Y. Huang,
Electrical Engineering and Computer Science Dept., Univ. of Illinois, Chicago, IL 60607;
email: (ed@dbis.eecs.uic.edu).

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1997 ACM 0362-5915/97/0600-0255 $03.50

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997, Pages 255-314.

256 . O. Wolfson et al.

1. INTRODUCTION

1.1 Motivation

The Internet and the World Wide Web are rapidly moving us towards a
distributed, wholly interconnected information environment. In this envi-
ronment an object will be accessed (i.e., read and written) from multiple
locations that may be geographically distributed worldwide. For example,
in electronic publishing a document (e.g., a newspaper, an article, or a
book) may be coauthored and read by many users, in a distributed fashion.
Financial instruments’ prices will be read and updated from all over the
world. An image, for example, an X-ray, will be read and annotated by
many hospitals. Raw data (e.g., on a scientific experiment) will be used and
modified by many laboratories. In mobile computing and communication
environments of the future (see Badrinath and Imielinski [1992] and
Imielinski and Badrinath [1992]), an identification will be associated with
a user, rather than with a physical location, as is the case today. The
location of the user will be updated as a result of the user’s mobility, and it
will be read on behalf of the callers.

In such environments, the replication of objects in the distributed system
has crucial implications for system performance. For example, consider an
object O. Its replication scheme is the set of processors at which O is
replicated. In World Wide Web terminology the replication scheme is the
set of servers of O. Thus the replication scheme determines how many
replicas of O are created, and to which processors these replicas are
allocated. This scheme affects the performance of the distributed system,
since reading O locally is faster and less costly than reading it from a
remote processor. Therefore in a read-intensive network a widely distrib-
uted replication of O is mandated in order to increase the number of local
reads and to decrease the load on a central server. On the other hand, an
update of an object is usually written to all, or a majority of the replicas. In
this case, a wide distribution slows down each write, and increases its
communication cost. Therefore, in a write-intensive network, a narrowly
distributed replication is mandated.

In general, the optimal replication scheme of an object depends on the
read-write pattern, that is, the number of reads and writes issued by each
processor.

Presently, the replication scheme of a distributed database is established
in a static fashion when the database is designed. The replication scheme
remains fixed until the designer manually intervenes to change the number
of replicas or their location. If the read-write patterns are fixed and are
known a priori, then this is a reasonable solution. However, if the read-
write patterns change dynamically, in unpredictable ways, a static replica-
tion scheme may lead to severe performance problems.

1.2 Dynamic Object Allocation

In this article we propose and analyze a dynamic replication algorithm
called Adaptive Data Replication (ADR). The ADR algorithm changes the

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 257

replication scheme of an object dynamically, as the read-write pattern of
the object changes in the network. The changes in the read-write pattern
may not be known a priori.

The algorithm is distributed as opposed to centralized. In a centralized
algorithm, each processor periodically transmits the relevant information
(usually statistics) to some predetermined processor x. In turn, x computes
the objective function and orders the change of replication scheme. In
contrast, in a distributed algorithm, each processor makes decisions to
locally change the replication scheme, and it does so based on statistics
collected locally. An example of a local change to the replication scheme is
the following: a processor x relinquishes its replica (by indicating to x’s
neighbors that writes of the object should not be propagated to x). This
change may result from a comparison of the number of reads to the number
of writes at x (i.e., locally collected statistics).

Distributed algorithms have two advantages over centralized ones: they
respond to changes in the read-write pattern in a more timely manner,
since they avoid the delay involved in the collection of statistics, computa-
tion, and decision broadcast, and their overhead is lower because they
eliminate the extra messages required in the centralized case.

The ADR algorithm works in the read-one-write-all context (see Bern-
stein et al. [1987], Ceri and Pelagatti [1984], and Ozsu and Valduriez
[1991]), and may be combined with two-phase-locking or another concur-
rency control algorithm in order to ensure one-copy-serializability (see
Bernstein et al. [1987]). Read-one-write-all implies that writes cannot
execute when there is a failure in the system. To allow some writes even in
the face of failures, in this article we propose a new protocol, Primary
Missing Writes, that can be combined with dynamic replication.

An earlier version of the ADR algorithm (called CAR and first announced
in Wolfson and Jajodia [1992]) was proposed for managing a distributed
database consisting of location-dependent objects in mobile computing
[Badrinath and Imielinski 1992; Badrinath et al. 1992; Imielinski and
Badrinath 1992]. In this database each object represents the location of a
user. It is read by the callers of the user, and it is updated when the user
changes location. When a user is relatively static and is called frequently,
then her location should be widely distributed throughout the network.
When a user moves frequently and is called infrequently, then her location
should be narrowly distributed, that is, have a small number of copies.

We first introduce and analyze the ADR algorithm for a network having a
logical or physical tree structure. Later we extend the algorithm to work for
a network modeled by a general graph topology. The extension superim-
poses a dynamically changing tree structure on the network; it also revises
the processing of reads and writes to take advantage of shorter paths that
may be available in the network but not in the tree.

1.3 Analysis of the ADR Algorithm

The ADR algorithm changes the replication scheme to decrease its commu-
nication cost. The communication cost of a replication scheme is the

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

258 . O. Wolfson et al.

average number of interprocessor messages required for a read or a write of
the object. Optimizing the communication cost objective function reduces
the load on the communication network and the processors’ CPU cost in
processing the messages.

The problem of finding an optimal replication scheme (i.e., a replication
scheme that has minimum cost for a given read-write pattern, has been
shown to be NP-complete (see Wolfson and Milo [1991]) for general graph
toplogies even in the centralized case. Thus we first define and analyze the
ADR algorithm for tree networks. The analysis is theoretical and experi-
mental.

Theoretically, we show that the ADR algorithm is convergent-optimal in
the following sense. Assume that the read-write pattern of each processor is
generally regular. For example, during the first two hours processor 2
executes three reads and one write per second, processor 1 executes five
reads and two writes per second, and so on; during the next four-hour
period processor 2 executes one read and one write per second, processor 1
executes two reads and two writes, and so on. Then we show that the ADR
algorithm will converge to the optimal replication scheme for the global
read-write pattern during the first two hours, then it will converge to the
optimal replication scheme for the global read-write pattern during the
next four hours, and so on. In other words, starting at any replication
scheme, the ADR algorithm converges to the replication scheme that is
optimal for the current read-write pattern; this convergence occurs within a
number of time periods that are bounded by the diameter of the network. In
order to prove this we introduce a new model for analyzing adaptive
replication algorithms.

Experimentally, we compare the performance of the ADR algorithm to
the performance of static replication schemes for various randomly gener-
ated read-write patterns. We show that the communication cost of the ADR
algorithm is on average between 21 and 50% lower than that of a static
replication algorithm. The exact figure depends on whether the read-write
pattern is fixed and known a priori, which in turn determines whether an
optimal static replication scheme can be selected.

Finally, in order to put the proposed algorithm in the proper perspective,
we devise a theoretical lower bound on the communication cost function.
The lower bound is the cost of the ideal algorithm that has complete
knowledge of all the future read-write requests, and their order. Obviously
this algorithm is unrealistic, and it is used only as a yardstick. Then we
show experimentally that on average, the communication cost of the ADR
algorithm is 63% higher than that of the lower bound.

For general graph network topologies we show that under regularity
assumptions the ADR algorithm improves the communication cost in each
time period, until it converges, that is, the replication scheme stabilizes.
However, in contrast to the tree case, this replication scheme may not be
optimal. In other words, starting with an initial replication scheme, the
ADR algorithm will change it to reduce the communication cost until it
reaches a local (rather than global) optimum. In this sense, the ADR

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 259

algorithm on general graph topologies is convergent rather than conver-
gent-optimal.

1.4 Article Organization

The rest of the article is organized as follows. In Section 2 we present and
demonstrate the Adaptive-Data-Replication algorithm. In Section 3 we
discuss various practical issues related to the implementation of the ADR
algorithm in distributed systems. For example, we discuss storage space
considerations in digital libraries, incorporation of ADR in various replica
consistency protocols (e.g., two-phase-locking), discrepancy between the
read-write unit and the data replication unit, object-orientation issues such
as methods and complex objects, and a way of incorporating a priori
information about the read-write activity in the ADR algorithm. In Section
4 we introduce the Primary-Missing-Writes algorithm that handles failure
and recovery in a dynamic replication environment. In Section 5 we
introduce a model for analyzing dynamic replication algorithms, and we
prove that the ADR algorithm is convergent-optimal in the sense previously
explained. In Section 6 we experimentally compare the performance of the
ADR algorithm with that of static replication algorithms. In Section 7 we
devise a lower bound offline algorithm for dynamic replication, and we
experimentally evaluate the ADR algorithm using the offline lower bound
algorithm as a yardstick. In Section 8 we extend the ADR algorithm to
general network topologies, and we prove that it is convergent. In Section 9
we compare our work to relevant literature, and finally, in Section 10 we
summarize the results.

In Appendix A we prove one of the main theorems of the article, and in
Appendix B we provide the pseudocode for the ADR algorithm.

2. THE ADAPTIVE-DATA-REPLICATION ALGORITHM

In this section we present the ADR algorithm that works for a tree
network. The tree represents a physical or a logical communication struc-
ture. Metaphorically, the replication scheme of the algorithm forms a
variable-size amoeba that stays connected at all times, and constantly
moves towards the “center of read-write activity.” The replication scheme
expands as the read activity increases, and it contracts as the write activity
increases. Roughly speaking, when at each “border” processor (i.e., proces-
sor of the circumference of the amoeba) the number of reads equals the
number of writes, the replication scheme remains fixed. Then this scheme
is optimal for the read-write pattern in the network.

The ADR algorithm services reads and writes of an object. They are
executed as follows. A read of the object is performed from the closest
replica in the network. A write updates all the replicas, and it is propa-
gated along the edges of a subtree that contains the writer and the
processors of the replication scheme. For example, consider the communi-
cation network T of Figure 1 and suppose that the replication scheme
consists of processors 3, 7, and 8. When processor 2 writes the object, 2

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

260 . O. Wolfson et al.

S

—CO

Fig. 1. Computer network.

sends the object to 1, then 1 sends it to 3, and then 3 sends it to 7 and 8
simultaneously. Overall, the communication cost of this write is four,
namely, the total number of interprocessor messages required.

In the ADR algorithm the initial replication scheme consists of a con-
nected! set of processors, and at any time, the processors of the replication
scheme, denoted R, are connected. For example, the ADR algorithm will
never replicate the object only at processors 2 and 3 of the network in
Figure 1. Consider a processor i that is an R-neighbor; that is, i belongs to
R but it has a neighbor that does not belong to R. Denote by j a neighbor of
i that does not belong to R. j sends read and write requests to i, each of
which originates either in j or in some other processor i, such that the
shortest path from 2 to R goes through j. For example, consider the
network of Figure 1. If R = ({3}, then processor 1 makes read-write
requests that originate in 1, 2, 4, and 5.

Each processor executing the ADR algorithm receives a priori a parame-
ter ¢ denoting the length of a time period (e.g., 5 minutes). Changes to the
replication scheme are executed at the end of the time period, by some
processors of the replication scheme. The need for changes is determined
using three tests, namely, the expansion test, the contraction test, and the
switch test. The expansion test is executed by each processor that is an
R-neighbor. Suppose that R is not a singleton set. Then we define an
R-fringe processor to be a leaf of the subgraph induced by R. Each R-fringe
processor executes the contraction test. Observe that a processor can be
both an R-neighbor and R-fringe. Then it first executes the expansion test,
and if it fails, then it executes the contraction test. A processor p of R that
does not have any neighbors that are also in R (i.e., R is the singleton set
{p}) executes first the expansion test, and if it fails, then it executes the
switch test.

Now we are ready to formally define the tests. At the end of each time
period, each processor i that is an R-neighbor performs the following test.

Expansion Test. For each neighbor j that is not in R compare two
integers denoted x and y. x is the number of reads that i received from j
during the last time period; y is the total number of writes that i received
in the last time period from i itself, or from a neighbor other than j. If x >

1 A set of processors is connected if it induces a connected subgraph of the tree network.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 261

y, then i sends to j a copy of the object with an indication to save the copy
in its local database. Thus j joins R.

Practically, the actual expansion from i to j could be delayed until i
receives the next read request from j, or i receives the next write to be
propagated to j. The indication to join R can be thus piggybacked on the
copy of the object sent from ¢ to j in order to service the request.

Except for i and j, no other processor is informed of the expansion of R.
The expansion test is performed by comparing the counters (one for the
reads and the other for the writes). The counters are initialized to zero at
the end of each time period, and incremented during the following time
period. The expansion test succeeds if the (if) condition is satisfied for at
least one neighbor. We say that the expansion test fails if it does not
succeed.

Consider a processor i that is an R-fringe processor; that is, it is in R and
has exactly one neighbor j that is in R. Processor i executes the following
test at the end of each time period.

Contraction Test. Compare two integers denoted x and y. x is the
number of writes that i received from j during the last time period; y is the
number of reads that i received in the last time period (the read requests
received by i are made by i itself or received from a neighbor of i different
from j). If x > y, then i requests permission from j to exit R, that is, to
cease keeping a copy.

Processor i does not exit unconditionally, since ¢ and j may be the only
processors of the current replication scheme, and they may both announce
their exit to each other, leaving an empty replication scheme. Therefore, if
the contraction test succeeds, then i keeps its replica until it receives the
next message from j. If this message is j’s request to leave R, then only one
(say, the one with the smaller processor identification number) leaves R.

Otherwise (i.e., if the exit request is granted) processor j will not
propagate any more write requests to i; any further read requests arriving
at i are passed along toj. Except for i and j, no other processor is informed
of the contraction.

Finally, suppose that processor i constitutes the whole replication
scheme. Then i is an R-neighbor; thus it must execute the expansion test. If
the expansion test fails, then i executes the following test at the end of the
time period.

Switch Test. For each neighbor n compare two integers denoted x and y.
x is the number of requests received by i from n during the last time
period; y is the number of all other requests received by i during the last
time period. If x > y, then i sends a copy of the object to n with an
indication that n becomes the new singleton processor in the replication
scheme, and i discards its own copy.

When the (if) condition of the contraction or switch test is satisfied, then
we say that the test succeeds. Otherwise, we say that it fails.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

262 . O. Wolfson et al.

Practically, the singleton replication scheme switch can be delayed until :
receives the next write from any processor, or i receives the next read
request from n. The switch from i to n means that, simultaneously, i exits
from R and n enters R.

We summarize the algorithm as follows. At the end of each time period,
an R-neighbor executes the expansion test. An R-fringe processor executes
the contraction test. A processor that is both an R-neighbor and an R-fringe
executes first the expansion test and, if it fails, then it executes the
contraction test. A processor of R that does not have a neighbor in R
executes first the expansion test and, if it fails, then it executes the switch
test.

Example 1. In this example we demonstrate the operation of the ADR
algorithm. Let us consider the network of Figure 1. Suppose that the initial
replication scheme R consists of the processor 1. Suppose that each
processor, except processor 8, issues 4 reads and 2 writes in each time
period; processor 8 issues 20 reads and 12 writes in each time period.
Suppose further that the requests are serviced in the time period in which
they are issued.

At the end of the first time period, processor 1 (as an R-neighbor of
processors 2 and 3) executes the expansion test. Since the number of reads
requested by processor 2 is 12 and the number of writes requested by
processors 1 and 3 is 20, processor 2 does not enter the replication scheme.
The number of reads requested by processor 3 is 32 and the number of
writes requested by processors 1 and 2 is 8. Thus processor 3 enters the
replication scheme as a result of the test, and R becomes {1, 3}.

At the end of the second time period processors 1 and 3 will execute the
following tests. First, processor 1 performs the expansion test (towards
processor 2), and fails as in the first time period. Second, processor 1
performs the contraction test, and succeeds, since processor 1 receives 18
writes from processor 3, and 16 reads from processors 1 and 2. At the same
time processor 3 executes the expansion test, and successfully includes
processor 8 in the replication scheme, since the number of reads from
processor 8 is 20, and the number of writes from the other processors is 14.
As a result of these tests, the replication scheme becomes {3, 8} after the
second time period.

Starting from the third time period the replication scheme will stabilize
at {3, 8}; that is, it will not change further.

3. PRACTICAL ISSUES

In this section we discuss the ADR algorithm, practical considerations in
its incorporation into a distributed database system, and some of its
applications.

ADR as a Distributed Algorithm

Consider the level of global knowledge required by a processor executing
the ADR algorithm. Note that the algorithm requires that each processor of

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 263

R knows whether it is an R-neighbor, or an R-fringe processor, or a
unique processor of R. Knowing this requires only that the processor know
the identity of its neighbors, and “remember” for each neighbor whether it
is in the replication scheme. A processor that does not belong to the
replication scheme does not participate in the algorithm; nor does an
internal processor of the replication scheme, that is, a processor that is not
an R-fringe, and all its neighbors have a replica.

What does a processor need to know in order to execute reads and writes?
A processor j of the current replication scheme R satisfies a read request
locally, and transmits each write request to the neighbors that are in the
replication scheme (each of which, in turn, propagates the write to its
neighbors that are in R). Therefore j has to know the identity of its
neighbors, and to remember for each neighbor whether it is in the replica-
tion scheme (which is the same information needed to execute the ADR
algorithm). Interestingly, a processor that does not belong to the replication
scheme does not have to “search” for the replication scheme in order to
execute reads and writes. A processor j that is not in the replication scheme
R must remember the processor i to which j sent the last announcement
that j exits R. i indicates the “direction” of R. Each read or write of j must
be sent to i which, in turn, if it is no longer in R, routes the request in the
“direction” of R. Therefore for executing the ADR algorithm and for
executing reads and writes, knowledge of the whole network topology is not
necessary; neither is knowledge of the whole replication scheme.

Connectivity of the Replication Scheme

Why should the replication scheme be connected under all circumstances?
For example, suppose that communication between New York and Los
Angeles goes through Chicago, and all the accesses to the object originate
from either New York or Los Angeles. The ADR algorithm will store a copy
in Chicago, and this may seem wasteful. The ADR algorithm can be
modified to create at the inactive internal processors, for example, Chicago,
only pseudoreplicas. Pseudoreplicas do not require real storage space. A
processor storing a pseudoreplica does not install any write locally, but it
propagates each write to its neighbors in the replication scheme, as in the
case where its replica is real. However, pseudoreplicas cannot satisfy reads
either. In the ADR algorithm, the only reads satisfied by internal copies are
reads originating from the respective internal processor, and at a pseu-
doreplica processor these reads will have to be satisfied from a real replica.
For example, if at some point Chicago does issue a read, the read will have
to be satisfied from a real replica. Exit requests should also be handled
more carefully. For example, if New York and Los Angeles both request
“exit” from the replication scheme, the pseudoreplica processor at Chicago
cannot grant both requests at the same time (unlike the case in which
Chicago holds a real replica), otherwise a real replica of the object will
become unavailable.
A related subject is the following.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

264 D O. Wolfson et al.

Multiple Objects and Space Limitations

In digital libraries consisting of multiple objects, storage space consider-
ations may play a significant role. In the ADR context, suppose that the
expansion or switch test indicates that a processor p should keep a copy of
an object, but p does not have enough storage space. This problem can be
addressed by ensuring that, if p has space for only n objects (we assume for
the moment that all objects are of equal size), then it stores the objects that
provide the maximum cost benefit. A way to do so is for p to maintain a
benefit value, denoted 6(o, p), for each object o stored at p. We define b(o,
p) in three cases: the replication scheme R of o is the singleton {p}; p is an
R-fringe processor; and p is not an R-fringe processor.

In the first case b(o, p) = = since o cannot be deleted from p.% In the
second case b(o, p) is the difference between the number of reads serviced
by p in the last time period, and the number of writes propagated to p in
the last time period.? In the third case b(o, p) is the number of reads
serviced by p in the last time period (writes are ignored since, as explained
in “Connectivity of the Replication Scheme,” even if o becomes a pseudorep-
lica at p writes will still be propagated to p).

Now, whenever p is ordered by a neighbor g to store an object o, p is also
given the value of b(o, p), which is computed by q as follows. If the order is
a result of an expansion from ¢, then b(o, p) is the difference between the
number of reads that g received from p, and the number of writes received
by ¢. If the order is a result of a switch from g, then b(o, p) is the
difference between the number of read-write requests of o issued by p to g,
and the number of all the other read-write requests for o received by ¢.

Now, when p is ordered to store the object o but p does not have enough
storage space, it compares the value of b(o, p) to the minimum benefit
value of all the objects that p stores. Denote by o’ the object for which this
minimum benefit value is achieved. If b(o, p) = b(o’, p), then the
expansion or switch order is denied. Otherwise o replaces o' at p; p is
contracted out of the replication scheme of o', or o’ becomes a pseudorep-
lica, depending on whether p is a fringe processor in the replication scheme
ofo’.

When different objects have different sizes this method can be adapted by
multiplying the benefit of an object by its size; however, we do not elaborate
on this here.

One Copy Serializability

In a transaction processing system, the ADR algorithm can be combined
with two-phase-locking to ensure one copy serializability. Since the ADR
algorithm obeys the read-one-write-all policy, this may seem obvious.

2 Strictly speaking, o can be switched to another processor, but for the sake of simplicity we do
not consider this marginal optimization here.

3 These two numbers represent the amount by which reads will become more expensive and
writes will become less expensive, respectively, if the copy of o is deleted from p. The
difference between the two numbers is positive, otherwise p would not store a copy of o.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 265

However, care must be taken, since the meaning of “all” changes dynami-
cally, and the replication scheme during one transaction may be different
from the replication scheme during another transaction. Therefore it may
be possible that a transaction writes to all the copies of the replication
scheme while the replication scheme is expanding to a processor i, and the
write is not propagated to i.

This problem can be handled as follows. Each processor j maintains a
directory record for each object. The record indicates whether j is in the
replication scheme R; if it is, then the record also indicates which of j’s
neighbors are in R, and if it is not, then the record indicates the direction of
R. When j expands, contracts, or switches, it executes a replication-
scheme-change transaction. Such a transaction modifies the directory
record for the object in order to indicate the change.

Now consider a transaction that writes the replica at processor j. It must
also read j’s directory record in order to determine to which of j’s neighbors
the write should be propagated. This read of the directory record conflicts
with any write of the directory record that is executed by a replication-
scheme-change transaction. Therefore a transaction that writes the object
conflicts with a replication-scheme-change transaction. Consequently, a
concurrency control mechanism that ensures serializability of transactions
in a static replication environment will also do so in this dynamic environ-
ment.

Other Replica Consistency Protocols

One copy serializability in transaction-oriented systems ensures that all
replicas of an object appear consistent at all times. However, dynamic
replication using the ADR algorithm can be combined with other replica
management protocols, namely, protocols that provide weaker consistency
guarantees.

Consider, for example, the lazy-replication protocol proposed in Ladin et
al. [1992]. In lazy-replication, the operations (described at a higher seman-
tic level than reads and writes) interleave correctly (i.e., according to a
causal specification) although replicas are not necessarily consistent at all
times. The protocol also distinguishes between update operations that have
to be eventually performed by all the replicas, and query operations that
are serviced by a single replica. Updates are propagated to all replicas
using background gossip messages.

Clearly, the performance of the lazy-replication protocol can also benefit
from dynamic replication, that is, from changing the number of replicas as
a direct function of the ratio of queries to updates, and moving the replicas
closer to the locations that initiate the operations. Moreover, consider any
2-type application, that is, an application in which there are two types of
operations, one that is serviced by one replica, and another, that is serviced
by all the replicas. For example, a transaction processing system ensuring
one copy serializability is one such application, and lazy-replication is
another. In the former the updates are propagated synchronously, and in

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

266 . O. Wolfson et al.

the latter they are asynchronous. In Fischer and Michael [1992] there is a
proposal of another 2-type protocol, namely, one that maintains a dictio-
nary database using three types of operations: two update operations,
INSERT and DELETE, and a query operation, LIST.

In principle, the performance of any 2-type application can be improved
by dynamic replication. The 2-type application may have to be adapted to
dynamic replication. The adaptation is straightforward, as previously ex-
plained, for transaction processing systems that ensure one copy serializ-
ability. However, adaptation of lazy-replication is more complicated, since
lazy-replication uses a multipart timestamp that has a component for every
replica (so it will not work if the number of replicas varies dynamically).

The Time Period t

Now we discuss a variant of the ADR algorithm in which the length of the
time period ¢ changes with the rate of read-write requests. Specifically,
consider the variant in which the tests of the ADR algorithm are executed
at a processor p every k read-write requests received by p. For example,
the expansion test would be executed when p (assuming it is an R-
neighbor processor) receives k read-write requests. The effect of this
change would be to execute the replication-scheme changes more frequently
when the read-write request load is heavy, and less frequently when the
load decreases. Furthermore, since the request frequency may differ in
different parts of the network, the tests of the ADR algorithm will be
executed more frequently in some parts of the network than in others and,
consequently, replication scheme adaptation will be faster in parts of the
network that execute more requests.

What will be the effect of an expansion of the replication scheme from p
to ¢ under the request-based version of the ADR algorithm? The answer is
the following. Consider the set of processors P that issued the & requests
based on which p made its expansion decision. Suppose that these requests
were issued during ¢ seconds. Suppose further that in the ¢ seconds
following the expansion each processor ¢ in the set P issues the same
number of reads (writes) as the number of reads that g issued in the ¢
seconds before the expansion. In other words, the read-write pattern A (see
Section 4.1 for the formal definition of a read-write pattern) representing
the set of requests issued by processors of P is identical before and after the
expansion. Then the total communication cost of executing the requests in
A is higher before the expansion than after it. In other words, if each
processor in the set P issues the same set of requests in the ¢-second
periods before and after the expansion, then the total cost of these requests
will be lower after the expansion.

Furthermore, for any two replication schemes that differ only in the fact
that in one p has expanded to g, A has a lower cost in the expanded
scheme. Thus, assuming that A remains the read-write pattern, the expan-
sion from p to g will reduce cost, regardless of other changes that will occur
in the replication scheme. Moreover, since the expansion clearly does not

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 267

affect the communication cost of requests issued by any other processor,
then the effect of the expansion is to reduce the overall cost of servicing
read-write requests. A similar claim holds for a replication scheme change
resulting from a contraction or switch test. The problem with a formal
analysis of the so-revised ADR algorithm is that it is hard to prove a global
property of the form of Theorem 3. The reason for this is that the
replication scheme changes (expansion, contraction, switch) would occur in
a totally asynchronous fashion, even if the clocks were synchronous.

Discrepancy Between the Read-Write Unit and the Replication Unit

The ADR algorithm assumes that the read-write unit is identical to the
replication unit. This is often the case when data are replicated in logical
units (e.g., a text file) but not when data are allocated in physical units. For
example, suppose that the replication unit is a block (i.e., data are repli-
cated in full blocks). Furthermore, suppose that as a result of a read, the
unit transferred between two processors is a set of tuples.

The ADR algorithm can be adapted to handle this situation as follows.
Each R-neighbor i in the replication scheme of a block b has two counters
for each neighbor j that is not in the replication scheme. These are the
write-counter and the read-counter of j. Whenever j reads some tuples from
b, j’s read-counter increases by a fraction that is the ratio of the total size
of the tuples read, to the size of b. For example, suppose that the read
issued by processor j retrieves 20 tuples from block b, and these tuples
constitute 1/10th of the size of 6. Then the read-counter for j increases by
1/10th of its value. Similarly, whenever i writes some tuples in b, j’s
write-counter increases by a fraction that represents the total size of the
tuples written. Other than that nothing changes in the ADR algorithm. At
the end of the time period the expansion test compares the read-counter
and the write-counter, and if the former is larger, then j is given a copy of
b, thus joining the replication scheme. In other words, the only difference
in the ADR algorithm is that the counters may be incremented by a fraction
rather than an integer.

Methods

The ADR algorithm can be generalized to systems in which processes do not
issue reads and writes to objects, but invoke methods that operate on these
objects. The generalization can work as follows. Each method invoked by
processor j on object O consists of both a read and a write. The data
returned by the method are “read from the object” by j, and the parameters
passed by j to the method are “written to the object” by j. The read and
write counters are incremented accordingly.

The Tree Topology

The ADR algorithm works on a tree network. The tree may represent a
logical (in addition to physical) interconnection. An example of a logical
tree network (possibly, over a physical network of arbitrary topology) is a

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

268 . O. Wolfson et al.

management hierarchy, in which some of the processors in the communica-
tion network are designated as managers, and they form a hierarchy.
Netmate, a network management system that we are currently developing
(see Dupuy et al. [1991a, b], Sengupta et al. [1990], and Wolfson et al.
[1991]), employs such a management hierarchy. Netmate’s purpose is to
provide software tools for the detection of faults and recovery from them in
very large communication networks. In Netmate, an object may be trans-
ferred from a manager to its superior, or from the superior to the manager,
and its read-write pattern varies over time. For example, consider an object
that stores the identification of the overloaded processors. During distrib-
uted diagnosis of a global problem in the network, this object is read
extensively, whereas at other times it is mainly written. Other examples of
logical interconnections represented by a tree can be found in Goodman
[1991] and Imielinski and Badrinath [1992].

Complex-Obiject Distribution

Observe that adaptive replication can also be used for determining com-
plex-object distribution. Complex-object distribution is the problem of es-
tablishing how a complex object is partitioned/replicated in a computer
network, that is, where each subobject is replicated. This problem seems to
be important in many applications, for example, computer-supported col-
laborative work (see Grudin [1991]). The ADR algorithm can be used for
dynamic complex-object distribution as follows. A complex object o includes
all its subobjects, and a read or a write of o is treated by the adaptive
replication algorithm as a read or write of all its subobjects. In addition,
each subobject is read and written individually; that is, it has its own
read-write pattern. Thus, when using the ADR algorithm, the distribution
of 0 in the network is determined automatically, depending on the read-
write pattern of o and on the read-write pattern of each one of its
subobjects.

Incorporating A Priori Information About Read-Write Activity

As it stands, the ADR algorithm does not use any a priori information
about read-write activity. It changes the replication scheme to improve cost
under the assumption that the activity in the last time period is indicative
of the expected activity in the next time period.

When a priori information is available, that is, when it is known that
processor 1 issues two reads and one write per time period, processor 2
issues five reads and one write per time period, processor 3 issues four
reads and four writes per time period, and so on, one can use a static
replication scheme to optimize communication cost. The static optimal
replication scheme can be found using a linear time algorithm provided in
Wolfson and Milo [1991].

However, sometimes we may want to combine a priori read-write infor-
mation with dynamic allocation. For example, suppose that the a priori
information is uncertain, and the read-write activity in a time period is a

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 269

random variable that has the a priori value with probability x, and has a
value identical to the latest time period with probability 1 — x. The ADR
algorithm can be adapted to incorporate this type of uncertain a priori
information by “adjusting” the number of reads and writes compared in
each test of the algorithm. For example, in the expansion test of processor
i, the number of read requests from j, ER, is taken to be AR -x +
LR - (1 — x); where AR is the number of read requests that are received
from j if all the processors issued their prespecified number of reads, and
LR is the number of reads received from j in the last time period. Similarly,
the number of writes from other processors is computed as EW = AW - x +
LW - (1 — x); where AW is the number of write requests that are received
from i or a processor other than j if all the processors issued their
prespecified number of writes, and LW is the number of writes received
from i or a processor other than j in the last time period. The expansion
test succeeds if ER > EW.

4. FAILURE AND RECOVERY

In this section we discuss a method by which the ADR algorithm can
handle failures. Actually, there may be quite a few methods of handling
failures, depending on the level of consistency required among the replicas,
and depending on the assumptions about the network topology. Specifi-
cally, a method that deals with failures in a one-copy serializable transac-
tion-oriented environment may be too restrictive when replicas are allowed
to diverge from the most up-to-date version.

Similarly, a method that works for a physical tree network may be too
restrictive for a logical tree network (see Section 3) superimposed on the
physical network. The reason is that failure in a physical tree implies
network partition, whereas in a logical tree network it does not necessarily
do so. In the latter case, suppose that a processor p of the logical tree fails.
Denote one of its neighbors by g. If all the neighbors of p can communicate,
then a tree can be reconstructed by logically connecting to g all the
neighbors of p, except g.

The method of this section deals with the most restrictive case, namely, a
one-copy serializable transaction-oriented system on a physical tree net-
work. Assume that the ADR algorithm is incorporated in a transaction
processing system using a concurrency control mechanism such as two-
phase-locking. As with any other read-one-write-all scheme, in case of a
failure that prevents a writing processor from reaching all replicas, the
writing transaction cannot commit. For a fixed number of replicas there is
a protocol called Missing Writes [Bernstein et al. 1987] that enables at
least some of the writes to be committed, while one-copy serializability is
ensured for any type of failure, including network partition.

The Missing Writes protocol uses read-one-write-all during the normal
mode of operation, and it switches to Quorum Consensus (see Gifford [1979]
and Thomas [1979]) when a failure is detected. However, the Missing
Writes protocol uses a priori knowledge of the total number of copies in

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

270 . O. Wolfson et al.

order to determine which partition has a majority of the copies; this will be
the only partition that is allowed to write the object. In a static replication
environment this works, but when the number of copies varies dynamically,
a partition cannot determine what constitutes a majority of the copies.
Hence, the Missing Writes protocol does not work for dynamic replication.
We have devised a protocol called the Primary Missing Write (PMW) that
solves this problem by substituting the primary copy protocol for the
quorum consensus.

4.1 Overview of the PMW Protocol

Generally speaking, the PMW protocol works as follows. At any point in
time a unique processor of the replication scheme is designated to be the
primary processor. In the normal (nonfailure) mode of operation PMW uses
the ADR algorithm. When the primary processor exits from the replication
scheme of an object, it assigns the primary role to the processor from which
it requests the exit. In case of a switch, the primary role is also switched.

Now consider the failure mode. We assume that the failures are clean;
namely, they can be detected, and a failed processor will not process any
request (no Byzantine failures). If a processor or a communication link
fails, then the PMW protocol changes the replication scheme of each object
to a singleton consisting of the primary processor alone. The replication
scheme may differ from object to object. This replication scheme remains
fixed until all the failures are repaired; at that time the system switches to
normal mode. In failure mode, the transactions in the partition that
contains the primary processor access the primary copy of the object. The
object is inaccessible by transactions in the other partitions.

A failure is detected in one of the following cases. First, a transaction
may not be able to read an object, that is, reach a processor at which the
object is replicated. In this case the transaction has to be aborted, and it is
resumed when the failure is repaired. Second, the transaction may not be
able to propagate a write of an object to some processor at which the object
is replicated. Then we say that a “missing write” is detected. Once a
“missing write” is detected, the transaction that issues the write is aborted
and requeued for execution.

Each processor has a status bit indicating whether the processor is
running in normal or failure mode. Each transaction, at initiation, reads
the status bit and runs either in failure mode or normal mode. In normal
mode the transaction will use the ADR algorithm for all the objects that it
accesses, and in failure mode it will use the primary copy for all objects it
accesses. The status bit is regarded as a database item; that is, it is locked
when read or written. The status bit is read by every transaction; it is
written by the failure and recovery transactions, discussed next.

4.2 Conversion to Failure Mode—When and How?

A partition converts to failure mode when a “missing write” is detected (i.e.,
if some of the replicas of the written object cannot be reached). The

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 271

processor that detects the “missing write” (we call it the pioneer processor)
initiates a failure-transaction that performs the following operations. First,
it notifies all the processors in the partition that they are in failure mode
and they should discard all nonprimary replicas of any object. Each such
processor p replies with the identification of the objects for which p is a
primary. The pioneer processor constructs the objects-reachable list, that is,
the list of objects that are reachable, and the (single) processor of the
partition that stores each object. Finally, the pioneer processor sends the
objects-reachable list to all the processors in the partition. The preceding
operations are executed in an atomic transaction. At the end of the failure
transaction all the processors in the partition will have converted to failure
mode, and each one will know which objects are reachable in the partition
and which processor stores each object.

4.3 Recovery and Conversion to Normal Mode

When a processor recovers from a failure it executes the recovery-transac-
tion that performs the following operations. First it checks whether there
exist any failures in the tree network.* If there exist some failures, then the
recovering processor tells all processors to be in failure mode; otherwise it
tells all processors to convert to normal mode. In either case the recovering
processor constructs the objects-reachable list as explained in the previous
section, and sends it to all the reachable processors. (Observe that even if
failures still exist in the system, the reachable-objects list has to be
updated since the recovery may reconnect disconnected components, and
thus it increases the list objects that are reachable in the partition.) This
concludes the description of the recovery transaction.

Observe that when the system converts back to normal mode, each object
will have a replication scheme consisting of a single node, the primary
processor, and adaptive replication using the ADR algorithm will begin.

Recovery from the failure of a communication link is also handled by
running the recovery transaction. This transaction is run by one of the
processors connected by the recovering link, say, the one with a lower
processor identification number.

4.4 Reliability Constraints

Observe that if the replication scheme consists of a single processor, then
failure of that processor results in the object being inaccessible for reads
and writes. In order to avoid this situation, the ADR algorithm may be
presented with a reliability constraint of the form “at any time there must

4 In order to check the up/down status of all processors in the network, a processor can simply
send a status message to all its neighbors. When a processor i receives such a message from
processor j, ¢ will send a status message to all its neighbors (except j) and wait for a certain
period of time. If i receives the “up” replies from all its neighbors in response to the status
message, then i sends an “up” status message to processor j. Otherwise, namely, if i receives a
“fail” status message, or it does not receive any message within a given time period, i sends to
J a “fail” status message.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

272 . O. Wolfson et al.

be at least two copies of an object.” The ADR algorithm can enforce this
constraint by preventing the contraction test from resulting in a singleton-
set replication scheme; it is done as follows. If a processor p has only one
neighbor ¢ that has a replica (i.e., p is a leaf of the subtree induced by the
replication scheme), then p denies any exit request issued by ¢. This
incorporation of reliability constraints in ADR is independent of the replica
consistency protocol; that is, it can be used in transaction oriented one copy
serializable systems, as well as other replica-management protocols.

5. ANALYSIS OF THE ADR ALGORITHM

In this section we first prove in Section 5.1 that the ADR algorithm
preserves the connectivity of the replication scheme. Then in Section 5.2 we
introduce a formal model for analyzing adaptive replication algorithms,
and we prove that when the read-write pattern of an object becomes
regular, the ADR algorithm converges to the replication scheme that is
optimal for the pattern.

5.1 Connectivity of the Replication Scheme

A network is an undirected tree, T = (V, E). The set V represents a set of
processors, and each edge in E represents a bidirectional communication
link between two processors. We consider an object replicated at some of
the processors in the network. The replication scheme of the object is the
(nonempty) set of processors at which the object is replicated.

THEOREM 1. Suppose that an object is replicated using the ADR algo-
rithm. If the replication scheme R in one time period is connected, then the
replication scheme R' in the immediately following time period is also
connected. Furthermore, either R and R' have at least one common proces-
sor, or they are adjacent singletons.

PrOOF. From the definition of the ADR algorithm we see that for a
processor i € R only one test can be successfully executed at the end of a
time period. If the expansion test succeeds, then the test maps the
replication scheme R to R’ = R U {some neighbors of i}. It is easy to see in
this case that R’ is a connected scheme, and that B and R’ have the
common processor i. If a contraction test succeeds, then the resulting
scheme is R’ = R\{i} where i is an R-fringe processor with a single
neighbor, say, j, of R. Since i and j cannot exit simultaneously, R’ is not
empty. Therefore R’ is connected, and R and R’ have a common processor
j. If the switch test succeeds, then the test maps the replication scheme
from R = {i} to a neighbor R’ = {n}. In this case, R’ is a connected
singleton scheme adjacent to R. [

The processors in the network issue read and write requests for the
object. A set of pairs A = {(#R;, #W,)|i is a processor in the network, and
#R, and #W; are nonnegative integers}, is called a read-write pattern.
Intuitively, #R; represents the number of reads issued by processor i and
#W, represents the number of writes issued by processor i. The replication

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 273

scheme associated with a request is the replication scheme that exists
when the request is issued. Observe that in practice it is possible that by
the time the request is serviced the replication scheme has changed.

We assume that a communication cost ¢(Z, j) is associated with each edge
(i, j) of the network; it represents the cost of the edge-traversal by the
object. The costs are symmetric and positive; that is, for each pair of
processors i and j, c¢(i, j) = c¢(j, i) > 0. The cost r; of a read issued at
processor i is the total cost of edges on the shortest path between i and a
processor of the associated replication scheme. Intuitively, the cost of a
read is the total cost of the communication links traversed by the object to
satisfy the read. Obviously, if i is in the associated replication scheme, then
the read cost is zero.

Assume now that processor i € V issues a write of the object, and let R
be the replication scheme associated with the write. The cost w; of the
write is the total cost of edges in the minimum-cost subtree of T that
contains the set {i} U R.

Given a replication scheme R and a read-write pattern A, the replication
scheme cost for A, denoted cost(R, A), is defined as

E #Ri'ri-l— E #Wi'wi.

iev eV

Intuitively, cost(R, A) represents the total cost of messages sent in order
to service the requests in the read-write pattern, assuming that R is the
replication scheme associated with every request in A. A message is the
transmission of the object over one communication link (edge). A replica-
tion scheme is optimal for a read-write pattern A if it has the minimum
(among all the replication schemes) cost for A. Obviously, optimality of the
replication scheme implies that the average cost of a request in A is
minimum.

The following theorem justifies the fact that the ADR algorithm keeps
the replication scheme connected at all times.

THEOREM 2. Let A be an arbitrary read-write pattern. For every discon-
nected replication scheme R there is a connected replication scheme R' such
that cost(R', A) = cost(R, A), and R C R'.

PrROOF. Suppose that the graph induced by R consists of two separate
connected components. We construct R’ as follows. Observe that there
must be two processors of R, i and j, such that if we denote the unique path
between them by i, b4, ..., b, j for & = 1, then the bs do not belong to
R. To obtain R’, we add to R all the processors on the path between i and
J. It is clear that the cost of any read request does not increase by
associating with it the scheme R’ rather than R. Furthermore, the cost of
each read request from a processor b; decreases to zero. It is also easy to
see that the cost of any write w, for the associated scheme R’ is equal to
the cost of w; for the associated scheme R. Thus cost(R', A) = cost(R, A).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

274 . O. Wolfson et al.

If the graph induced by R consists of more than two separate connected
components, then we can repeat this process, each time connecting two
disconnected components, until we obtain a connected replication scheme of
lower or equal cost than that of R. [

5.2 Convergence to Optimal Replication Scheme

Now we show that when the read-write pattern becomes regular the ADR
algorithm moves the replication scheme towards the optimal one, and when
reaching it the ADR algorithm stabilizes the replication scheme. This is
quite easy to see for simple read-write patterns.

For example, suppose that starting at some point in time ¢, all the
processors become quiescent (i.e., stop issuing requests), except for one i;
and, suppose that i issues only reads. Then it is clear intuitively that the
ADR algorithm will stabilize the replication scheme, and that the stability
scheme will include i (i.e., it will be cost-optimal for any read-write pattern
consisting only of reads from 7). Specifically, if at time ¢ processor i is in
the replication scheme R, then as long as it issues read requests and all the
other processors are quiescent, the replication scheme will not change. If
processor i is not in R, then R will expand towards ¢ until it reaches i, and
from then on the ADR algorithm will become stable. Each expansion step
will take one time period, and therefore if we define the diameter of a
network to be the maximum number of edges on a path, then the conver-
gence to the optimal replication scheme will occur after a number of time
periods that is bounded by the diameter of the network.

Now suppose that starting from point in time ¢ on, processor i issues only
writes. Then the ADR algorithm will stabilize the replication scheme, and
the stability scheme will be optimal for any read-write pattern consisting
only of writes from i (i.e., the stability scheme will be the singleton set {i}).
Specifically, if at time ¢ processor i is in the replication scheme R, then as
long as it issues write requests and all the other processors are quiescent,
the replication scheme will contract until it consists of the single processor
i. If processor i is not in R, then denote by j the processor of R that is
closest to i. R will contract until it consists of the singleton set {j}, and
then it will switch until it consists of the singleton set {i}. In both cases,
convergence to the optimal replication scheme will occur after a number of
time periods that is bounded by the diameter of the network.

Now we show that this convergence property holds for any regular
schedule. A schedule is a set of time-stamped requests o{fi, o’tz, cey o{‘"
Each o is a read or write request, j; is the processor at which the request o
originated, and ¢, is an integer time stamp at which o was issued and
serviced (for the purpose of algorithm analysis we assume that requests are
executed instantaneously). Two read requests can have the same time
stamp, but two write requests, and a read and a write request cannot do so.

Consider an integer ¢ representing the number of time units in a period,
and a schedule S. Then we can refer to the requests of S in the first time
period, the requests of S in the second time period, and so on. For example,
suppose that the time-stamp of the first request of S is 0. Then the requests

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 275

of S in the first time period are all the requests with a time-stamp not
higher than ¢; the requests of S in the second time period are all the
requests with a time-stamp s, such that ¢ + 1 = s = 2 ¢, and so on.
Informally, we say that a schedule is regular if each time period has the
same read-write pattern. Formally, a schedule S is t-regular if for each
processor p there are two integers r, and w,, such that in every time
period processor p issues r, read requests and w, write requests. For a
t-regular schedule S we say that {(r,, wp)| p is a processor} is the
read-write pattern of the time period.

Consider a schedule S whose first time stamp is 0, and consider the
execution of the ADR algorithm. Assume that all the processors execute the
tests of the ADR algorithm and they change the replication scheme instan-
taneously. The first time period tests and the replication scheme changes
occur after all the requests with time stamp ¢, and before all the requests
with time stamp (¢ + 1); all the second time period tests and the
replication scheme changes occur after all the requests with time stamp 2¢
and before all the requests with time stamp (2¢ + 1); and so on. This
implies in particular that the clocks at the various processors run “approx-
imately” at the same rate, since for all of them expiration of the time period
t, although not necessarily simultaneous, always occurs between the same
pair of requests in the schedule. We say that the ADR algorithm stabilizes
in the gth time period if all the tests of all processors fail starting from the
gth time period. The replication scheme at time period ¢ is called the
stability scheme. Recall that in Example 1 of Section 2 the replication
scheme stabilizes in the third time period.

THEOREM 3. Let d be the diameter of a tree network, and suppose that a
schedule S is t-regular, for an integer t. Then, starting with any connected
replication scheme, the ADR algorithm with time period t stabilizes on S
after at most (d + 1) time periods; furthermore, the stability scheme is
optimal for the read-write pattern of the period.

PrROOF. See Appendix A. [

6. EXPERIMENTAL ANALYSIS OF THE ADR ALGORITHM

In this section we report on experimental comparison of the performance of
the ADR algorithm with that of static replication. In Section 6.1 we
describe how the experiments were conducted. In Section 6.2 we compare
the ADR algorithm with all static replication schemes, using a fixed
read-write pattern. The read-write pattern was generated using Poisson
processes with parameters that were randomly chosen. In Section 6.3 we
compare the ADR algorithm with each static replication scheme. For each
comparison we use a different randomly generated read-write pattern.
Whereas Sections 6.1 through 6.3 consider the network of Figure 1, Section
6.4 considers other network topologies.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

276 D O. Wolfson et al.

6.1 Experiment Preliminaries

For the experimental analysis we used SUN workstations interconnected
as a tree network. The communication between two neighboring processors
is via stream-socket.

Each experiment counts the number of messages that are used by an
algorithm in order to execute a given read-write pattern. The algorithm is
either ADR, or static replication with a particular replication scheme. We
only consider connected replication schemes (see Theorem 2). For the
network of Figure 1 we consider 8 different replication schemes of size 1; 7
different schemes of size 2; 10 schemes of size 3; 10 schemes of size 4; 11
schemes of size 5; 10 schemes of size 6; 5 schemes of size 7; and only one
scheme of size 8.

We assume that each processor p in the tree network generates reads
and writes of the object independently of other processors, following a
Poisson distribution with parameters A2, and A%, respectively. Namely, in
each time period, the expected number of reads issued by p is AZ, and the
expected number of writes issued by p is AL, writes. Furthermore, we
assume that the parameters A2 and AL, of each processor p change over
time. Namely, p has parameters {A2', A2} for the first L, periods of time,
and then has parameters {A22, A2?} for the next L, periods of time, and so
on. The Ls are also generated at each processor randomly and indepen-
dently, and due to independence, the read-write patterns are not regular in
the sense of Section 5.2. On the other hand they are not totally chaotic,
since the same A, and A, persist for more than one time period at each
processor.

In our experiments the clocks of the different processors are not synchro-
nized, and a request issued in one time period is not guaranteed to be
serviced within the same time period due to communication delays. In
other words, the ideal assumptions made in the last section do not hold.

As mentioned, the cost of an algorithm is the total cost of messages. A
message is sent between neighbors in the tree, and we distinguish between
two types of messages, data messages and control messages. Data messages
are messages that carry the object, and control messages are messages that
do not do so, that is, read requests and exit-replication-scheme requests
(the latter type is used only in the ADR algorithm, and it is sent by a
processor that relinquishes its copy). In the experiments we assume that
the costs of all edges in the tree network are identical; that is, there is no
difference between the costs of two data messages or the costs of two
control messages.

6.2 A Fixed Read-Write Pattern

In this section, we consider a read-write pattern that was generated by
certain Poisson processes. The parameters of the processes are given in
Table I. Each column of the table corresponds to a processor, and an entry
L,: A? — M, in column p indicates that for L, time periods processor p
generated, in each time period, reads and writes using Poisson processes

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 277

Table I. Fixed Access Pattern

© 1@ 13 |1 6® 16 16 | & |6
47:6—2 | 17:4—0 | 29:1—0 |}16:17—2] 66:0—0 | 48:16—4 | 31:2—0 | 57:0—0
71:2—1 | 47:1—0 | 70:8—2 {67:1—0 | 45:12—4| 77:1—0 | 33:15—5| 22:4—2
33:0—0 f49:10—3]53:0—0 | 79:0—0 | 89:0—0 |53:0—0 |33:7—3 |30:0—0
49:14—3] 87:1—0 | 48:2—1 | 38:5—1 22:4—1 150:2—0 |63:18—5
53:0—0 |28:1—0

with parameters A2 and A%, respectively. For example, column 7 indicates
that processor 7 generated, on average, 2 reads and 0 writes per time
period for the first 31 periods; then it generated, on average, 15 reads and 5
writes per time period for the next 33 periods, and so on. The three values
L, A,, and A,, in each entry were generated randomly, such that A, > A,,.
Each processor generated requests for 200 time periods. Observe that the
read-write pattern of Table 1 is not regular, thus the ADR algorithm does
not necessarily converge.

We executed 14 runs of the ADR algorithm using Poisson processes with
the preceding parameters. Each run started with a different initial replica-
tion scheme. The total number of requests generated in different runs
varied by at most 0.1%. The total cost of different runs varied by at most
2%. Thus the initial replication scheme does not affect the cost of the ADR
algorithm significantly.

On average, the ADR algorithm used 5,833 data messages and 2,005
control messages in order to service a read-write pattern generated by
Poisson processes with the preceding parameters. Using these two num-
bers, the cost of the ADR algorithm can be computed for any w, where o is
the ratio of the control message cost to the data message cost.

Then we chose one read-write pattern P of the 14 read-write patterns,
and we computed the number of data messages D and the number of
control messages C used to service the requests in P, for each static
replication scheme. For 0 = w = 1, using D and C, we computed the cost of
servicing the read-write pattern P. For o = 0, the optimal static replication
scheme® is {1, 2, 3, 8}; the cost of the ADR algorithm on P is 33.47% lower
than {1, 2, 3, 8)’s cost. For o = 1, the optimal static replication scheme is {1,
2,3, 6,7, 8}; the cost of the ADR algorithm on P is 28.82% lower than {1, 2,
3, 6, 7, 8)’s cost. For any other value of w the cost of the ADR algorithm is
lower than the cost of the optimal replication scheme by a percentage c,
28.82 < ¢ < 33.47.

The conclusion from the preceding discussion is the following. Suppose
that it is known in advance that the read-write pattern in Table 1 occurs in

5 See Section 5.1 for the definition of an optimal replication scheme.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

278 . O. Wolfson et al.

S0%

sise » 3 sise » 3 sizse » 3 sise » 4 sise o § size s ¢ sise = 7 sise o 8

B everape soving percestsge

standard deviastion of saving

Fig. 2. Average communication cost savings of ADR algorithm compared with static replica-
tion schemes of given size, for v = 0.

the network. Then, by using the ADR algorithm the database administrator
can save at least 28% compared to the optimal (for the pattern) static
replication scheme.

Now assume the read-write pattern of Table 1 occurs in the network, but
this fact is not known a priori and/or the pattern changes from day to day
or week to week. In this case, in the absence of a dynamic replication
algorithm, the DBA cannot select an optimal replication scheme, and she or
he may choose an arbitrary static scheme. Thus we compared the perfor-
mance of the ADR algorithm with such an arbitrary static replication
scheme, assuming the preceding read-write pattern. The results of this
comparison are illustrated in Figure 2. It shows the cost-saving percentage®
of the ADR algorithm over the static replication schemes, for the case
where w = 0. The dark bars represent the average (over all connected
schemes of the same size) savings in communication cost obtained by the
ADR algorithm; the lighter bars represent the standard deviation. For
example, compared with all the connected replication schemes consisting of
three processors, the ADR algorithm saves an average of 47.3% with a
standard deviation of 10.2%. Figure 3 illustrates the communication cost
savings for o = 1. For an intermediate value of w, namely, for 0 < o < 1,
the ADR algorithm’s average communication cost saving is at least the
minimum of the two bar charts.

6.3 Varying Read-Write Patterns

In this section we compare the performance of the ADR algorithm with that
of each connected static replication scheme. We use a randomly generated
read-write pattern for each comparison. More precisely, to compare the
ADR algorithm with a specific static replication scheme, say, @, we start
the ADR algorithm with the initial replication scheme @. For each @ we
execute 8 runs, where a run is a set of read/write requests generated as
follows. Each processor p generates the parameters, L, (which is randomly
selected between 1 and 11), A? (which is randomly selected between 0 and

8 The cost-saving percentage of algorithm X compared to algorithm Y is (1 — x/y) = 100,
where x is the cost of algorithm X and y is the cost of Y.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 279

50%

size » 3 sise = 3 sise » 3 sise » & sise o § sise o 6§ oise o 7 oizse = 0

Fig. 3. Average communication cost savings of ADR algorithm compared with static replica-
tion schemes of given size, for o = 1.

20), and AZ, (which is randomly selected between 0 and AZ). In each time
period the processor p issues reads and writes using Poisson processes with
parameters A7 and A}, respectively. After L, time periods, processor p
randomly selects another set of three parameters L,, A\, and A7, and A%;
processor p continues the run with the new set, and so on. Observe that, in
contrast to the previous section, a different set of read-write patterns is
used for every static replication scheme.

For each run r the cost comparison was executed as follows. During the
execution of the ADR algorithm on the run r we recorded all the requests
generated from all processors, and we computed the communication cost ¢
by counting the messages. Then we computed the communication cost d of
the static replication scheme @ using the same request set, where @ is the
initial replication scheme of the ADR algorithm. By comparing ¢ and d we
obtained the cost saving of the ADR algorithm for run r. The cost of the
ADR algorithm was compared with that of @ using 8 different runs, and we
computed the average cost saving (over the 8 runs) obtained by the ADR
algorithm. Call this average a(@Q).

Then we computed the average of all a(®)s for all the replication
schemes @ of a fixed size. The results of these calculations for o = 0 are
given in Figure 4. The results for o = 1 are given in Figure 5.

6.4 Other Network Topologies

To verify that the ADR algorithm is superior to static replication in other
network topologies we ran two additional sets of experiments. In each of
them the network topology was generated in a random fashion, and the
initial replication scheme consisted of all the processors. In the first set of
experiments we used the read-write pattern of Table 1 on network topolo-
gies of eight processors. The results of these experiments are summarized
in Figure 6. The first column of the table in this figure shows the tree, the
second column shows the number of messages used by the ADR algorithm,
and the third column shows the number of messages used by optimal static
replication, that is, static replication with the optimal (in the sense of
Section 5.1) replication scheme. On average, the cost savings of the ADR
algorithm are 27.86% for w = 0, 24.51% for w = 0.5, and 21.84% for o = 1.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

280 . O. Wolfson et al.

SONF aus

n% 42.9%

size » 3 sise = 2 sise & 3 sise o4 sizse s § oizse o § eize » 7 sise » 8

Fig. 4. Average communication cost savings of ADR algorithm compared with static replica-
tion schemes of given size (varying read-write patterns), for o = 0.

50%

sise » 3 size = 2 size » 3 size = ¢4 sigse = 8 sise = ¢ size » 7 sise » 8

Fig. 5. Average communication cost savings of the ADR algorithm compared with static
replication schemes of a given size (varying read-write patterns), for o = 1.

The second set of experiments is similar to the first one, except that the
number of processors in the network, the static replication scheme, and the
read-write pattern are all randomly generated. In other words, the experi-
ments are similar to the ones described in Section 6.3, except that the
network and the static replication scheme used for comparison are gener-
ated in a random fashion. The results of these experiments are summarized
in Figure 7. On average, the cost savings of the ADR algorithm are 50.58%
for o = 0, 50.06% for w = 0.5, and 49.40% for w = 1.

7. A LOWER BOUND FOR DYNAMIC REPLICATION ALGORITHMS

In this section we devise the lower bound on the cost of a given schedule.
Then we use the lower bound as a yardstick to experimentally evaluate the
performance of the ADR algorithm.

What is the lower bound? The ADR algorithm is “online” in the sense
that after each request the new replication scheme has to be determined,
without knowledge of the subsequent requests. Furthermore, the new
replication scheme is determined in a distributed fashion, and the read-
write requests may occur concurrently. In this section we present the
optimal algorithm, called Lower-Bound (LB). It is “offline” in the sense that
its input consists of a schedule given a priori. In other words, the algorithm
is not presented with “new” requests. LB is a centralized algorithm. The
input of LB is a schedule, and the algorithm LB associates a replication
scheme with each request such that the total communication cost is
minimum.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 281
ADR Optimal Static
Tree Structure i Moz
DataM Control M Data | Control

8-3,8-1,8-2,3-4,2-5,2-7,4-6 5234 2521 2,3,4,8 9659 347
1-4,4-2,1-3,2-5,3-6,2.7,1-8 6680 2665 1,2,3,4 9846 3611
6-1,6-7, 6-8, 8-5, 14, 4-3,4-2 7157 2100 1,4,6,8 8798 2805
7-2,2-8, 8-6, 7-1,8-5, 1-4, 6-3 7780 4168 1,2,6,7,8 9160 1770
8-3,8-1,8-2,3-4,87,7-5,2-6 4722 1781 2,7,8 8872 4358
3-6,6-4,6-5,3-7,3-8,3-2,6-1 5905 3435 3,6 8095 5025
3-6, 64, 6-5,3-7, 6-8,3-2, 4-1 7852 5194 3,4,6 9218 | 4480
2.5,2-3,3-4,4-6, 5-7, 5-8, 5-1 6025 3054 2,3,4,5 10548 | 4181
7-2,28,8-6,7-1,1-5, 14,13 6320 2552 1,2,7,8 8573 2703
2-5,2-3,2-4,4-6,6-7,7-8,7-1 7119 3732 2,4,6,7 9838 3585
2-5,2-3,5-4, 4-6, 6-7, 4-8, 8-1 8473 5184 4,5,6,8 10373 | 4060
7-2,2-8,2-6,7-1, 8-5, 7-4, 8-3 6702 4029 27,8 8257 | 3813

Fig. 6. Comparison of performance of ADR algorithm versus that of static optimal replica-
tion, for various network topologies. The read-write pattern used is given in Table 1.

ADR Static replication scheme
Tree Structure Replicati M S
Data Messages | Control M eplication essage

Data Control
7->2-5,2-3, 24, 4-6, 6.7, 7-1 2460 690 2,3 6564 4412
8->6-1,67,7-8,8-5,74,1-3,7-2 2342 744 2,4,7 6144 3541
7->1-4,4-2,4-3,1.5, 26,17 2277 652 1,4,5 4400 1764
8->3-6,64,6-5,3.7,4-8,3-2, 8-1 2102 905 2,3,6,7 5361 2052
9.>9.4,4-1,9-2,1-3,4-5,1-6,1-8,4.7 3132 1864 1,4,6 5452 2313
7->2-4,2-3, 4.5, 4-6,4-7,5-1 17%0 992 1,4,5 3357 1061
9.>2.6,2-3, 34, 6-5,4-1,2-8,2.9, 14 2468 %7 1,4 7596 5097
8-> 14,4-2,4-3,2-5,3-6,1.7, 78 2503 1520 1,34 4714 2411
7->3-5,5-4,4.6,4.7,6-2,7-1 3142 1121 2,4,5,6 3839 584

Fig. 7. Comparison of performance of ADR algorithm versus that of static replication, for
various network topologies. The first column shows the number of processors in the network,
and the network topology. The read-write pattern and the static replication scheme were

randomly generated.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

282 . O. Wolfson et al.

Suppose that S = o’t , o’t';' .. o’" is a schedule; recall that a pair of
requests can have the same t1me stamp only if both are reads. A config-
ured-schedule is a schedule in which each request oj is mapped to its
associated replication scheme R;. It is denoted ol (R 1), oﬂZ(R),
oy (R,), and we require that requests with the same time stamp are
associated with the same replication scheme (since if the requests are
issued simultaneously the replication scheme at that time is unique). An
Adaptive Replication Algorithm (ARA) is a function that maps each sched-
ule to a configured schedule.

For convenience, we assume in this section that a schedule is a sequence
of requests (rather than a partial order), in which the requests are given in
increasing time stamp order. Two reads that occur simultaneously may
appear in any order in the sequence. It will be clear that the results of this
section are not affected by this assumption.

7.1 The Cost of a Configured Schedule

Intuitively, the cost of a configured schedule is the cost of all read-write
requests, plus the cost of changing the associated replication scheme from
one request to the next. Formally, we define the unit 0o/(R,), 0/+}(R;, ;) in
the configured schedule to be a transition. The cost of the transition is
defined as follows. If o/it} is a write, then the cost of this transition is the
cost of the write request o//} to the replication scheme R;, ; (the cost of a
write to a replication scheme is defined in Section 5.1). If 0’7} is a read,
and o} is a write, then the cost of the transition is the cost of the read of
Jiv1 from R; ;, plus the minimum cost of writing the object from the
processors of R; to the processors of R, ;. Intuitively, this represents the
cost of executing o, 1, plus the cost of moving the replication scheme from
R, to R,,,. If o/} is a read, and o/ is also a read, then the cost of the
transition is the cost of the read of j,,; from R, ;, plus the minimum cost
of writing the object from the processors in R; U {all the processors on the
shortest path that connects j; to R;} to the processors of R, ;. Intuitively,
this case is slightly more complicated than the previous one for the
following reason. Since the object is read at j;, j;, and all the processors
between it and R; can be used to minimize the cost of copying the object
from R; to R, ;.

Finally, the cost of a configured schedule is the cost of the first request,
plus the cost of all the consecutive transitions of the configured schedule.

For example, consider the tree network of Figure 1 in Section 1, and the
configured schedule: r$({3, 6, 7, 8}), r3 ({3, 6}), ra({1, 3}). Its cost,
assuming a unit cost for each edge is the following.

[the cost of a read by 6 from the replication scheme {3, 6, 7, 8}] (= 0)

+
[the cost of a read by 1 from the replication scheme {3, 6}] (= 1)
+
[the cost of moving from {6 U {3, 6, 7, 8}} to {3, 6}] (= 0)
+

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 283

[the cost of a read by 2 from the replication scheme {1, 3}] (=1)
+
[the cost of moving from {1 U {3, 6}} to {1, 3}] (=0).

The first addend represents the cost of the first read. The second and third
addends represent the cost of the first transition. The fourth and fifth
addends represent the cost of the second transition. Notice that a replica-
tion scheme contraction, as in the move from {3, 6, 7, 8} to {3, 6}, does not
move the object, hence it has zero communication cost.

As another example for the same tree, consider the configured schedule:
r?({l, 2}1), w;({l, 2,3, 6}), rg({3, 7, 8}). Its cost is the following.

[the cost of a read by 6 from the replication scheme {1, 2}] (= 2)

+

[the cost of a write by 7 to the replication scheme {1, 2, 3, 6}] (= 4)
+

[the cost of a read by 3 from the replication scheme {3, 7, 8}] (= 0)
+

[the cost of moving from {1, 2, 3, 6} to {3, 7, 8}] (=2).

The first addend represents the cost of the first read. The second addend
represents the cost of the first transition. The third and fourth addends
represent the cost of the second transition.

Given a schedule i, its cost-optimal configured schedule is the one with
minimum cost among all configured schedules that have the sequence of
requests ¢ (but different associated replication schemes).

7.2 The Lower Bound Algorithm

The algorithm LB, defined next, is given as input a schedule ¢. It config-
ures i to create a cost-optimal configured schedule.

Intuitively, when using LB, each write is sent to the processors that will
read it. In other words, write w is sent to the set of processors that read
after w, but before the first write that succeeds w.

Precisely, the algorithm LB works as follows. If the first request of s is a
read, then LB associates the replication scheme {all processors that read
before the first write} with all the reads up to the first write. Whether or
not the first request is a read, LB associates with each write w”, and with
each read executed between w’ and the first write that succeeds it, the
following replication scheme: {j U the processors that read the object
between w- and the first write that succeeds w?}. Observe that LB is an
adaptive replication algorithm.

For example, consider the tree network in Figure 1, and the schedule: r],
rS, r3, w3, rs, ri. The configured schedule devised by LB is as follows:
ri({1, 3, 6}), rS({1, 3, 6}), r3({1, 3, 6}), wi({1, 2, 8, 6}), ri({1, 2, 3, 6}),
r2({1, 2, 3, 6}). Assuming a unit cost on each edge, the cost of the
configured schedule is

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

284 . O. Wolfson et al.

[The cost of the first read by 1 from the scheme {1, 3, 6}] (= 0)
[The cost of the ﬁ:;t transition] (= 0)
[The cost of the sec:)—nd transition] (= 0)
[The cost of the write by 3 t0+the scheme (1, 2, 3, 6}] (= 3)
[The cost of the foui"—th transition] (= 0)
[The cost of the ﬁgh transition] (=0).

Notice that all the read requests in this schedule are local, hence their
cost is zero. The only nonzero addend is the third transition. The total cost
of the configured schedule is 3, and it is minimum, since processors 2 and 6
have to read the replica written by processor 3; the minimal cost of
transmitting the object from processor 3 to processors 2 and 6 is 2 + 1.

For a schedule {y and an adaptive replication algorithm A, denote by
c () the configured schedule obtained from i, by A.

THEOREM 4. For a schedule s, c; () is cost-optimal.

ProOF. First we subdivide the schedule ¢ in a convenient manner. We
denote by 7 an arbitrary schedule that consists of zero or more read
requests. We denote by o an arbitrary schedule that consists of a write
followed by zero or more read requests. Then we can rewrite the schedule
as = my, 04, ..., 0. Also, for an arbitrary ARA, A, we can rewrite the
schedule c,(¢) as cu(mg), caloq), ..., ca(oy). Furthermore, the cost of
c () is the sum: the cost of c4(7,) plus the total cost of all c4(0;)’s for i =
1, ..., k (see the definition of the cost of a configured schedule).

Next, consider the cost of the configured schedule devised by LB. Suppose
mo = r ... ri» (n = 0). Denote R = {iy, ..., i,}. LB associates the
replication scheme R with all the reads in m,. Thus the cost of read
requests is 0. Furthermore, there is no replication scheme change in
cr.g(mg). Therefore the cost of c;p(my) is 0.

Now consider schedules of the form ¢;. Suppose that o; = wi, ry, ...,
rm (m = 0). LB associates the replication scheme {j,, j;, . .. , j,,} with all
the requests in o;. Thus the cost of the reads in o, is zero, and also the cost
of the transitions is 0; the cost of the write is the cost of edges in T',, where
T, is the minimum-cost subtree of the network that spans over {j,,
jl’] .]m}

Now, for an arbitrary adaptive replication algorithm A, consider c4(o;).
Since the processors in {j4, ..., j,,} read the replica written by j,, the set
of edges traversed by the object as a result of requests in o; is a connected
subtree of the network that contains the set of processors {j,, j1, - - - » Jm)-
Denote this subtree by @, . Since T, is the minimum cost subtree that
contains {j,, ji, - .-, jm), the cost of the edges in T,, is not higher than
that in @,. U

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 285

7.3 Experimental Comparison of the ADR Algorithm Versus Lower Bound

For each run executed in Section 6.3 we recorded the request sequence from
each processor. Then we merged the eight sequences (for eight processors)
in a random fashion, to create one input to the offline lower bound
algorithm. For each input we computed the offline lower bound communi-
cation cost using the LB algorithm, and compared it to the cost of the run
reported in Section 6.3. Overall we compared the performance of the ADR
and LB algorithms on 496 inputs (runs). From those experiments we
concluded that, on the average, for ® = 0 the ADR algorithm incurs 163.6%
of the communication cost of the lower bound algorithm; the standard
deviation is 8.6%. For o = 1, the ADR algorithm incurs on average 223% of
the communication cost of the lower bound algorithm; the standard devia-
tion is 17%. However, remember that since the LB algorithm knows the
future, it does not use any control messages.

8. DYNAMIC ALLOCATION IN GENERAL NETWORKS

In this section we discuss dynamic data allocation in a general graph
network topology. First, let us observe that since the problem of finding the
static optimal replication scheme is NP-complete for a network modeled as
a general graph (see Wolfson and Milo [1991]), it is unlikely to find an
efficient and convergent-optimal dynamic allocation algorithm. However,
one obvious way to extend the ADR algorithm to an arbitrary network is
first to find a spanning tree of the network, and then to execute the ADR
algorithm on this tree. The drawback of this approach is that the path in
the spanning tree between two processors is not necessarily the shortest
path between them. Consequently, suppose that a processor i issues a read
request for the object, and the request is propagated along the tree edges
until it reaches a processor j of the replication scheme. If there is a shorter
path between i and j, it would be wasteful for j to send the object to i along
the tree path; it should be transmitted along the shortest path. In other
words, in contrast to the ADR algorithm, the read request and the propa-
gation of the object in response should proceed along different paths.
Furthermore, expanding the replication scheme towards i should mean an
expansion from j to k£, where & is the first processor that does not have a
replica on the shortest path from j to i.

Modifying the ADR algorithm to use the shortest path for a general
graph network, as previously explained, suggests the following algorithm,
called ADR-G. Basically, this algorithm still consists of the three tests of
the ADR algorithm. At any point in time there is a spanning tree of the
network, in which the replication scheme induces a connected subtree.
However, the tree structure changes dynamically over time, as explained
next.

A Changing Spanning Tree

The edges of the current tree are divided into two subsets; edges of the
subtree induced by the replication scheme, and the rest. Edges of the

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

286 . O. Wolfson et al.

subtree induced by the replication scheme are not directed, in the sense
that a processor that has a replica does not have a tree-father. These edges
are used to propagate writes received by a processor of the replication
scheme to all the other processors of the scheme. It is important that a
subtree is defined to connect the processors of the replication scheme in
order to prevent a write from being propagated to a processor from two
different neighbors, thus increasing the communication cost. This may be
the case if processors of the replication scheme are interconnected by a
graph that has cycles, and, as in ADR, a write is propagated by a processor
p to all its neighbors, except the one from which it received the write.

The rest of the tree edges are directed edges. They are used by a
processor k outside the replication scheme to propagate read and write
requests to the replication scheme. £ has a unique tree-father, and zero or
more tree-sons. The tree-father of % is the first processor on the shortest
path in the graph to the replication scheme, as it is currently known to %.
As the replication scheme changes, and the changes become known to &
through servicing of k’s read requests (see the following for details), k’s
tree-father changes. This is the sense in which the tree structure changes
dynamically.

When a processor p joins the replication scheme as a result of the
expansion test, the directed edge between p and its neighbor in the
replication scheme becomes undirected. When a processor p relinquishes
its replica as a result of the contraction test, p’s tree-father becomes its
single neighbor in the replication scheme. When the replica switches from i
to n, n becomes i’s tree-father.

Processing of Read and Write Requests

A read request issued by a processor i that does not have a replica is sent to
i’s tree-father, and is propagated along the edges of the current tree until it
reaches a processor j of the replication scheme. In response, the object is
propagated along the shortest path in the graph as follows. When a
processor of the replication scheme (j in this case) receives a request to
send the object to i, j first determines if there is a shortest path to i that
goes through a tree-neighbor £ that has a replica. If so, j propagates the
request to k.7 Otherwise, if there is no shortest path that goes through a
tree-neighbor that has a replica, j services the read-request; that is, j sends
the object to i through some shortest path in the graph. Notice that, since
there may be more than one shortest path between two processors, the
path-choice for j in either one of the two preceding alternatives is nonde-
terministic. Suppose that given the same set of possible neighbors through
which to propagate a read request (or the object), a processor always

7 In other words, j “prefers” to propagate the request to another processor of the replication
scheme that is closer to i, rather than service the request by sending the object. Intuitively,
the reason for this is that it is cheaper to propagate the request rather than the object; also,
this simplifies the replication-scheme change tests.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 287

chooses the same processor. Then we say that read-processing is determin-
istic. For simplicity we assume that read-processing is deterministic.

The tree-father of a processor p that does not have a replica is defined to
be the last graph-neighbor from which p received the object. In other
words, when p receives the object from its graph-neighbor g, the tree-father
of p becomes ¢ (since the object was sent via the shortest path from the
replication scheme, thus ¢ is the first processor on the shortest path from p
to the replication scheme).

A write from a processor that does not have a replica is propagated to the
replication scheme along the tree-father path. When a write is received by
a processor k of the replication scheme it is processed as in ADR; that is, it
is propagated to all of k’s tree-neighbors except the one from which &
received the write.

The ADR-G Algorithm

At any point in time a processor knows its neighbors in the tree, the
general network topology,® and a processor of the replication scheme is also
aware which of its tree neighbors have a replica. At the outset, a connected
replication scheme and spanning tree of the network are selected.

The expansion, contraction, and switch tests of the ADR-G algorithm are
similar to those of the ADR algorithm. However, some generalizations of
the tests are necessary. For example, in a general network, due to the fact
that a processor is not cognizant of the shortest path to the replication
scheme, it is possible for a processor of the replication scheme to receive a
read request from some neighbor i and respond to it by sending the object
to another neighbor j. In this case, for the purpose of replication scheme
expansion, what matters is the direction in which the object is sent (since it
represents the current shortest path information), rather than the direction
from which the request is received (which represents outdated shortest
path information). Therefore the language of the tests has to be modified to
account for this subtlety. This language change is actually a generalization,
and the revised tests hold for a tree network as well.

An R-neighbor is a processor of the replication scheme that has a graph-
(rather than tree-) neighbor that does not have a replica. The expansion
test is executed by an R-neighbor for each graph-neighbor that does not
have a replica.

Expansion Test. For each neighbor j that is not in R compare two
integers denoted x and y. x is the number of times i sent the object toj (to
service read requests) during the last time period; y is the total number of
write requests issued by i or received by i from a neighbor other than j
during the last time period. If x > y, then i sends toj a copy of the object
with an indication to save the copy in its local database. Thus j joins R.

8 Actually, instead of the whole network topology, the processor only needs to know how to
propagate a message to each of the other processors through a shortest path, that is, to which
of its graph-neighbors to transmit a message destined for a processor x.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

288 . O. Wolfson et al.

Fig. 8. General graph network.

Suppose that at the end of a time period processor i is an R-fringe
processor; that is, it has exactly one graph-neighbor j that is in R. Then i
executes the following contraction test in one of two cases: i is not an
R-neighbor; or i is an R-neighbor and its expansion test failed.

Contraction Test. Compare two integers denoted x and y. x is the
number of writes that i received from j during the last time period; y is the
number of reads in the last time period that either have been issued by i
itself or that resulted in i sending the object to some neighbor. If x > y,
then i requests permission from j to exit R, that is, to cease keeping a copy.

Suppose that processor i constitutes the whole replication scheme. If the
expansion test fails, then i executes the following test at the end of the time
period.

Switch Test. For each neighbor n compare two integers denoted x and y.
x is the number of times i sends or receives the object to or from n during
the last time period; ¥ the number of times i sends or receives the object to
or from a neighbor other than n during the last time period. If x > y, then
i sends a copy of the object to n with an indication that n becomes the new
singleton processor in the replication scheme; and i discards its own copy.

Example 2. In this example we demonstrate the operation of the ADR-G
algorithm. We consider again the network of Figure 1, but we add to the
graph the set of edges {(1, 8), (5, 8), (2, 6)} (see Figure 8).

As in Example 1, we suppose the following. First, the initial replication
scheme R is {1}. Second, we suppose that each processor, except processor
8, issues 4 reads and 2 writes in each time period; processor 8 issues 20
reads and 12 writes in each time period. Third, we suppose that the
requests are serviced in the time period in which they are issued. In
addition, we assume that the cost of each edge is one, and that initially
requests and responses from processor 6 are routed through processor 3
(note that 6, 2, 1 is also a shortest path between 6 and 1). In other words,
the tree-father of 6 is 3, and the tree-father of 3 is 1. Also, requests and
responses from processor 5 are routed through processor 2.

At the end of the first time period processor 1 (as an R-neighbor of
processors 2, 3, and 8) executes the expansion test. Since the number of
reads requested by processor 2 is 12 and the number of writes requested by
processors 1, 3, and 8 is 20, processor 2 does not enter the replication
scheme. The number of reads requested by processor 3 is 12, and the

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 289

number of writes requested by processors 1, 2, and 8 is 20. Thus processor 3
does not enter the replication scheme as a result of the test. The number of
reads requested by processor 8 is 20, and the number of writes requested by
processors 1, 2, and 3 is 14. Thus processor 8 enters the replication scheme,
which now becomes {1, 8}.

Assume that the first request issued by processor 5 during the second
time period is a read. This read is received by 1 and is propagated to 8,
since 1, 8, 5 is a shortest path from 1 to 5 that goes through a processor
that has a replica, namely, 8. 8 replies by sending the object directly to 5.
Thus the tree-father of 5 changes from 2 to 8.

At the end of the second time period processors 1 and 8 will execute the
following tests. Processor 1 performs the expansion test (towards proces-
sors 2 and 3), and it fails. Then processor 1 performs the contraction test,
and it fails since the processor 1 receives 14 writes from processor 8, and 24
reads from processors 1, 2, and 3. At the same time processor 8 executes the
expansion test towards processor 5 and it fails. The contraction test
executed by processor 8 fails since 8 receives 12 write requests from
processor 1, and 24 read requests from processors 5 and 8. Thus, starting
from the second time period, the replication scheme will stabilize on {1, 8}.

The total communication cost per time period is 80 for the replication
scheme {1, 8}, and it is 92 for the initial replication scheme {1}. The optimal
replication scheme is {8}, and its total communication cost is 72.

It is easy to see that Theorem 1 still holds for the ADR-G algorithm, thus
the algorithm preserves replication scheme connectivity.

Next we show that for a regular read-write pattern the communication
cost of the requests in each time period decreases each time the replication
scheme changes. This also implies that the replication scheme will stabi-
lize. In other words, for a regular read-write pattern, starting with any
connected replication scheme the communication cost decreases in each
time period, until a time period in which the replication scheme does not
change. From that point the communication cost will be fixed in each time
period.

Unless stated otherwise, for the statement and proof of the next theorem
we use the definitions and assumptions of Section 5. We say that a
t-regular schedule has no blind writes if every write issued by a processor
is preceded by a read from the same processor issued in the same time
period.

THEOREM 5. Suppose that for an integer t, a schedule S is t-regular and
has no blind writes. Suppose further that the ADR-G algorithm changes the
replication scheme at the end of the xth time period. Then the communica-
tion cost of requests in the time period x + 1 is lower than the communica-
tion cost of requests in the time period x.

PrOOF. We prove the theorem by considering an expansion, contraction,
and switch, and show that each one of these changes decreases the cost of
requests in a time period. For a switch this is clearly the case.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

290 D O. Wolfson et al.

Expansion. Suppose that in the xth time period processor j’s tree-father
is processor i which has a replica, and at the end of the xth time period the
replication scheme expanded from i to j. First let us observe that by the
way the ADR-G algorithm operates, if a read issued by a processor p during
a time period is serviced by a processor g, then all the reads issued by p
during the time period are serviced by q. Furthermore, for the writes
issued by p in the same time period, the first processor of the replication
scheme that they reach is q. We use the following notation.

Rx is the set of processors for which the reads that they issue in time
period x are serviced by i sending the object to j.°

—Wx is the set of processors for which the writes that they issue in time
period x are sent by j to i.

—Rx1 is the set of processors for which the reads that they issue in time
period x + 1 are serviced by j.

—Wx1 is the set of processors for which the writes that they issue in time
period x + 1 are sent by j to i.

Let us consider how the expansion affects the cost of requests. The cost of
every write issued by a processor that is not in Wx1 is higher in time period
x + 1 than in time period x by at most ¢(Z, j). The cost of every read issued
by a processor that is in both Rx and Rx1 is lower in time period x + 1
than in time period x by c(i, j). We show that Rx C Rx1 and Wx C Wx1.
Since the ADR-G algorithm expanded from i to j we know that the total
number of reads issued by processors in Rx is higher than the total number
of writes issued by processors that are not in Wx. From this we conclude
that the expansion from i to j reduces the cost of requests in a time period.

Left to show is that Rx C Rx1 and Wx C Wx1. For the first contain-
ment, suppose that a processor p is in Rx. It means that there is a shortest
path from i to p that goes through j. Furthermore, it means that the
tree-father path from p to the replication scheme goes to i through j. Then
a request issued by p in time period x + 1 must be serviced by j. For the
second containment, suppose that a processor p is in Wx. Since there are
no blind writes, p is also in Rx, and by previous containment p is in Rx1.
Thus, by the way writes are processed and by definition of Wx1, p must be
in Wx1l.

Contraction. Suppose that in the xth time period processor j is in the
replication scheme, and has only one tree-neighbor in the replication
scheme, namely, processor i. Suppose further that at the end of the xth
time period j contracts out of the replication scheme. We use the following
notation.

Rx is the set of processors for which the reads that they issue in time
period x are serviced by j.

9 In other words, for every processor p in Rx, there is a shortest path between i and p that
goes through j.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 291

Wx is the set of processors for which the writes that they issue in time
period x are sent by j to i.

Wx1 is the set of processors for which the writes that they issue in time
period x + 1 are sent by j to i.

Let us consider how the contraction affects the cost of requests. The cost
of every read issued by a processor in Rx is higher in time period x + 1
than in time period x by at most c(i, j). Observe that the fact that j
contracted out implies that the number of writes issued by processors that
are not in Wx is higher than the number of reads issued by processors in
Rx. Assume that the replication scheme in time period x is identical to that
in time period x + 1, except that processor j has a replica. It is easy to see
that the cost of a write issued by a processor in Wx does not increase in
time period x + 1 compared to time period x.

To complete the proof that the contraction reduces cost, we show that the
cost of a write w of a processor p that is not in Wx is lower by at least c(i,
J) in time period x + 1 compared to time period x. If p is not in Wx1, then
clearly the cost of w is lower by c(i, j) after the contraction. Thus suppose
now that p is in Wx1, and consider the write w in time period x. The cost of
w is a + T, where a is the cost of the tree-father path from p to the
replication scheme, and T is the cost of the tree spanning the replication
scheme. Observe that since p is in Wx1, p is not in the replication scheme
in time period x + 1. The cost of a write issued by p in time period x + 1 is
b + T', where b is the cost of the tree-father path from p to ¢ (through j),
and T’ is the cost of the tree spanning the replication scheme. Notice that
the difference in cost between T and T’ is c¢(i, j), and b is not higher than
a since the tree-father path from p to the replication scheme changed to go
through j after the first read issued by p in time period x + 1. Thus the
cost of w is lower by at least c(i, j) in time period x + 1 compared to time
period x.

We conjecture that the performance of the ADR-G algorithm can be
further improved if every write being propagated carries with it the
identification of all the processors of the replication scheme traversed. In
other words, whenever a processor of the replication scheme propagates a
write to its tree-neighbors, it also appends its identification to the message
being propagated. Thus when a processor p of the replication scheme
receives a write, it knows the path in the replication scheme traversed by
the write. This means that p knows more about the whole replication
scheme than which tree-neighbors have a replica. However, the study of
this conjecture is beyond the scope of this article.

9. RELEVANT WORK

Generally, there are two main purposes for data replication: performance
and reliability. In this article we address the performance issue. Most
existing performance-oriented works on replicated data consider the prob-
lem of static replication, namely, establishing a priori a replication scheme
that will optimize performance but will remain fixed at runtime. This is

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

292 . O. Wolfson et al.

also called the file-allocation problem, and it has been studied extensively
in the literature (see Dowdy and Foster [1982] for a survey, and Wolfson
and Milo [1991], Humenik et al. [1992], and Ozsu and Valduriez [1991] for
recent work on this problem). In contrast to the approach taken in this
article, works on static replication assume that the read-write pattern is
given a priori. For example, in Wolfson and Milo [1991] we have shown that
finding the (static) optimal replication scheme for a given arbitrary net-
work (modeled as a general graph), and for a given read-write pattern is an
NP-complete problem. We have shown, however, that the problem can be
solved efficiently for tree-, ring-, and clique-network topologies. The
present article was motivated by the realization that the algorithm for tree
networks lends itself naturally to distribution. However, the results in
Wolfson and Milo [1991] also indicate that a comparable algorithm (distrib-
uted, efficient, and convergent-optimal) is unlikely to exist for general
networks.

Works on quorum consensus (such as Agrawal and Bernstein [1991],
Gifford [1979], Kumar [1991], Thomas [1979], and Triantafillou and Taylor
[1991]), voting and coterie (such as Agrawal and El-Abbadi [1990], Adam
and Tewari [1993], Garcia-Molina and Barbara [1985], Herlihy [1987],
Jajodia and Mutchler [1990], Paris [1986], and Spasojevic and Berman
[1994]) refer to performance in the presence of failures. They address the
issue of how to dynamically adjust the read/write quorums and votes in
order to minimize the data accesses in case of site failures and network
partition.

Another approach to improve the performance in a replicated database is
to relax the serializability requirement. Works on quasicopies [Alonso et al.
1988; 1990; Barbara and Garcia-Molina 1990], lazy replication [Ladin et al.
1988; 1992; 1990], and bounded ignorance [Krishnakumar and Bernstein
1991] fall in this category. In contrast, as we show in Section 3, the
adaptive replication algorithms that we propose here can be combined with
a concurrency control algorithm to preserve one-copy serializability.

Recently, a few works that address the problem of dynamic (versus
static) data replication have been published [Awerbuch et al. 1993; Bartal
et al. 1992]. The need for dynamic replication was pointed out in Gavish
and Sheng [1990] and Barbara and Garcia-Molina [1993]. The algorithms
in Bartal et al. [1992] are randomized, and they require centralized
decision-making by a processor that is aware of all the requests in the
network. Furthermore, they assume that all requests are serial (even two
reads cannot occur concurrently), but it is not clear if and how the
algorithms can be combined with a concurrency control mechanism. In
summary, we do not think that the Bartal et al. [1992] algorithms are
applicable to a distributed database environment.

Awerbuch et al. [1993] present a competitive distributed deterministic
algorithm for dynamic data allocation. The algorithm is presented in a very
sketchy manner, but basically it operates as follows. For each write, a copy
is created at the writing processor, and all the other copies are deleted. For
each read, the object is replicated along a shortest path from the replication

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 293

scheme to the reading processor. The algorithm has an intricate data-
tracking component that enables a processor to efficiently locate the
processors of the replication scheme. This data-tracking component is used
in read and write operations. In Hwang and Wolfson [1993; 1994] we have
discussed similar algorithms, and have proven that they are competitive in
slightly different models.

The Awerbuch et al. [1993] algorithm is competitive, which means that
there exists a constant ¢ such that for any sequence s of read-write
requests: (the cost of the Awerbuch et al. [1993]-algorithm on s) = ¢ X (the
cost of the lower-bound offline algorithm on s). Thus the communication
cost of the Awerbuch et al. [1993]-algorithm may be worse than that of the
lower bound by a constant factor, that is, a factor that is independent of the
number of requests; in the Awerbuch et al. [1993] algorithm case the factor
is O(log*n), where n is the number of processors in the network. In other
words, a competitive algorithm provides a guarantee on the performance of
the algorithm for the worst case input. The worst case input is a sequence
of requests in which at any point in time the next request is the worst for
the current configuration (i.e., replication scheme in our case). And intu-
itively, this is the reason that the Awerbuch et al. [1993] algorithm erases
all copies except the one at the writing processor for each write. Creating or
updating replicas requires communication, and in the worst case the next
request does not take advantage of this communication; in the worst case
the next request is either a write or a read from a processor farthest from a
replica, depending on which one maximizes communication cost for the
current replication scheme.

However, in this article we assume that most of the time, the next
request is not the one that maximizes cost. In the schedules that we
assume, the read-write pattern of a processor in a time period is repeated
for several time periods. In other words, the read-write pattern in a time
period is in most cases predictable based on the read-write pattern in the
immediately preceding time period. Indeed, this is the case in which the
ADR algorithm performs best. On the other hand, a competitive algorithm
does not take advantage of schedule regularity.

It can be shown that for regular schedules the ADR algorithm is superior.
For example, assume that the initial replication scheme consists of the
whole set of processors, and consider the regular sequence of requests in
which in each time period there is a write from a processor p, followed by a
read from each other processor. Then the communication cost of the ADR
algorithm in each time period is the cost of the write, that is, the cost of
propagating the object to all the processors (the reads are free). On the
other hand, the Awerbuch et al. [1993] algorithm in each time period first
incurs the communication cost of deleting all the copies. Then it incurs the
cost of propagating the read requests. Finally, it incurs the cost of propa-
gating the object to all the processors. Only this last cost is incurred by the
ADR algorithm.

Since the replication scheme oscillates between p and the whole set of
processors, the preceding example also demonstrates that the Awerbuch et

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

294 D O. Wolfson et al.

al. [1993] algorithm is not convergent. Suppose now that in the preceding
example the schedule is not perfectly regular, but in some of the time
periods a read is missing. Clearly, in this case the ADR algorithm still
outperforms the Awerbuch et al. [1993] algorithm. Thus strict regularity of
the schedule is not necessary for superiority of ADR.

In Wolfson and Jajodia [1992], we proposed an earlier version of the ADR
algorithm, called CAR. In contrast to the ADR algorithm, in CAR a
processor examines the replication scheme, and may change it, as a result
of every read-write request. This increases the overhead of adaptive repli-
cation. In the present article we also report on experimental performance
analysis, we devise a protocol to handle failures, we extend the analysis to
weighted communication links, and we extend the ADR algorithm to
networks modeled as general graphs; these are new contributions compared
to Wolfson and Jajodia [1992].

10. CONCLUSION

The purpose of adaptive replication algorithms is to improve the perfor-
mance of distributed systems by adjusting the replication scheme of an
object (i.e., the number of copies of the object, and their location) to the
current access pattern in the network. In this article we proposed an
Adaptive Data Replication (ADR) algorithm, which is executed distribu-
tively by all the processors in a tree network. The execution of the ADR
algorithm is integrated with the processing of reads and writes of the
object.

We discussed various issues related to the incorporation of the ADR
algorithm in distributed systems. Specifically, we proposed a method of
coping with storage space limitations at the various processors in the
network, we discussed incorporation of ADR in various replica consistency
protocols (e.g., two-phase-locking), and we discussed a method of adjusting
the ADR algorithm to consider a priori information about the read-write
activity in the network.

We also addressed issues of failure and recovery in adaptive replication.
In particular, we showed that methods of handling failures and recovery in
static replication do not necessarily carry over to the dynamic case. We
proposed a mechanism by which write activity may continue even when
failures occur in the network.

We analyzed (theoretically and experimentally) the communication cost
of the ADR algorithm, that is, the average number of messages necessary
for servicing a read-write request. The theoretical analysis of the algorithm
was performed using a new model we introduced in this article. It showed
that in steady state'® ADR converges the replication scheme to the optimal
one, regardless of the initial scheme. Convergence occurs within a number

10 A steady state is one in which the read-write pattern of the object is regular, namely, each
processor i performs #R; reads and #W; writes per time period. This regular read-write
pattern may not be known a priori; furthermore, it may change over time (e.g., from day to
day).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 295

of time-periods (e.g., a time period may be a minute) that is bounded by the
diameter of the network.

Our experimental results showed the following. For a fixed, randomly
generated read-write pattern the communication cost of the ADR algorithm
is 21% lower than that of the optimal static replication scheme. This
optimal replication scheme can be used if the read-write pattern is fixed
and known a priori. For a read-write pattern that is not known a priori or
varies over time, the communication cost of the ADR algorithm is 28 to 50%
lower than that of static replication.

We also compared the performance of the ADR algorithm against that of
an ideal unrealistic algorithm that knows all future read-write requests. In
other words, the ADR algorithm is “online,” in the sense that it has to
adjust the replication scheme based on knowledge of the past read-write
requests, but not of future ones. However, the optimal way of adjusting the
replication scheme clearly depends on future requests, since ideally, a
processor that writes the object should send the write to the processors that
will read the object in the future. Thus the lower bound is obtained by an
“offline” algorithm. Therefore we devised a lower bound algorithm, and
experimentally compared its performance to that of the ADR algorithm.
The experiments have shown that on average, the ADR algorithm incurs a
communication cost that is only 1.636 times that of the lower bound
algorithm.

Finally, we extended the ADR algorithm to operate in a network topology
modeled by a general graph. We have shown that in steady state, starting
with an initial replication scheme, the ADR algorithm will change the
scheme in each time period as long as it can improve performance. When
this is not possible, the replication scheme will stabilize, with the commu-
nication cost of this final replication scheme being at least as low as that of
the initial one.

Appendix A: Proof of Theorem 3

The proof proceeds in three stages, each of which corresponds to a subsec-
tion. In the first stage we prove that the ADR algorithm stabilizes. In the
second stage we prove that the stabilization occurs after at most d + 1
time periods (where d is the diameter of the tree network). In the third
stage we show that the stability scheme is optimal for the read-write
pattern in each time period. Throughout this Appendix we assume that S is
a t-regular schedule and A is the read-write pattern of the time period ¢.

In order to prove the theorem, we prove several lemmas. Throughout the
proofs of the lemmas, we use the following notations. Let i and j be two
adjacent processors in the tree network, and suppose that the edge between
i and j is removed. We denote by T(i, j) the connected component
containing i; T(j, i) is the other connected component. Denote the number
of requests (reads or writes) issued in A from 7'(Z, j) by NO(i, j); NW(i, j)
is the number of writes issued from 7'(i, j); NR(i, j) is the number of reads
issued from 7'(z, j).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

296 . O. Wolfson et al.

A.1 The ADR Algorithm Stabilizes

LEMMA 1 Consider two processors i and j that are in the replication
scheme of the ADR algorithm at two different time periods t, and ts,
respectively. Then each processor on the unique path between i and j is in
the replication scheme of the ADR algorithm at some time period q, t; =

q = t,.
Proor. Follows easily from Theorem 1. [

LEMMA 2. If a switch test succeeds, then subsequently no expansion test
will succeed.

PROOF. Suppose that in some time-period ¢ the object is switched from
processor I to processor j. Then NO(j, i) > NO(i, j). Since the switch test
from i to j is not executed unless the expansion test of i (to all neighbors,
including j) fails, we derive NR(j, i) = NW(i, j). Subtracting the second
inequality from the first, we obtain NW(j, i) > NR(i, j). Thus the
expansion test from j to ¢ will fail.

Next, we show that the expansion test of j to any other neighbor % will
fail too. Clearly, NR(k, j) = NR(j, i) since the tree T'(k, j) is a subgraph of
the tree T'(j, 7). Similarly, NW(, j) = NW(j, k). Combining these two
inequalities and the second inequality of the last paragraph we derive
NR(k,j) = NW(j, k). This inequality implies that the expansion test from
J to k will fail. [

LEMMA 3. If a processor j exits from the replication scheme as a result of
the contraction test, then j will not reenter the replication scheme as a result
of the expansion test.

PrOOF. Suppose that in time period ¢, j is an R-fringe processor with a
single neighbor i in R, and NW(i, j) > NR(j, i). Hence j is deleted from R
by the contraction test. Assume by way of contradiction that afterwards, in
time period £,, j is told by some processor i’ to join the replication scheme,
as a result of the expansion test executed by i’. Consider the first time this
happens, namely, the first time j reenters the replication scheme as a
result of the expansion test. Then NR(j, i') > NW(', j). By Lemma 2,
between time periods ¢, and ¢, j could not have reentered as a result of the
switch test. Thus j is not in the replication scheme between time periods ¢,
and t,. Therefore from Lemma 1, we know that there is a path from i to i’
that does not go through j. Thus unless i = i’, there is a cyclej — i —
i'" — j in the tree network. Therefore i = i’. But then, the last two
inequalities contradict each other. [J

Although we do not need the result for the proof of Theorem 3, let us
mention that a processor can exit the replication scheme as a result of the
contraction test and then reenter as a result of the switch test.

LEMMA 4. A processor that exits from the replication scheme as a result
of the switch test cannot reenter the replication scheme.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 297

PrROOF. Suppose that the object is switched from i to j at the end of a
time period. Then NO(j, i) > NOC(i, j). Then, by Lemma 2, the singleton
replication scheme cannot expand, it can only switch to a neighbor or
stabilize. From the inequality we obtained, the replication scheme cannot
switch from j to i. In the tree network, except for the edge i — j, there is no
other path that connects j to i. Therefore i will not be switched into the
replication scheme, and the lemma follows. [

LEMMA 5. The ADR algorithm will stabilize in a finite number of time
periods.

ProoF. Lemmas 3 and 4 indicate that a processor % that exits from the
replication scheme can reenter only if its exit is by a contraction test, and
its reentry is by a switch test. But then, once there is a successful switch
test, by Lemma 2, a subsequent change of the replication scheme can occur
only by a switch test. By Lemma 4, processor 2 can exit the replication
scheme at most once more. Therefore each processor can exit at most twice
from the replication scheme, once by contraction and once by switch.
Consequently, there must be a time period x, starting from which no
processor exits from the replication scheme. Therefore starting at x the
replication scheme can only expand. Since the number of processors is
finite, the ADR algorithm will stabilize after a finite number of time
periods. [

A.2 The ADR Algorithm Stabilizes in d + 1 Time Periods

In the proofs of Lemmas 6-10 we denote by R, the replication scheme in
the first time period, we denote by R, the replication scheme resulting from
the tests executed at the end of the £th time period, and we denote by F' the
stability scheme. The length of a path @ between two processors is the
number of communication links between them in the tree network; this
length is denoted by |@|. The distance between two processors m and n,
denoted dist(m, n), is the length of the path between them.

LemMA 6. If R, is a singleton for some q = 1, then R, ., is also a
singleton.

PrROOF. Suppose that B, = {x}. We prove the lemma in the following
two cases: R,_; is a singleton; and R,_; is not a singleton.

First, suppose that R,_; is a singleton and R,_; = {z}. If z = x, then
the replication scheme stabilizes on x and R, ; = {x}. If z # x, then by
Lemma 2, R, ; is also a singleton.

Second, suppose that R,_; is not a singleton. Then x € R,_,, since by
the definition of the ADR algorithm a processor cannot successfully expand
to x and contract itself out of the replication scheme at the end of the same
time period. Suppose that y is an arbitrary neighbor of x. Ify € R,_,, then
y must have contracted out of the replication scheme at the end of time
period ¢, and hence cannot reenter the replication scheme as a result of an
expansion test (by Lemma 3). Therefore the expansion from x to y fails at

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

298 . O. Wolfson et al.

Figure 9

the end of the time period ¢ + 1. Now suppose that y ¢ R,_;. Then at the
end of time period ¢ + 1 the expansion from x to y fails too, sincex € R,_,
and the expansion from x to y failed at the end of time period q. Thus the
expansion test executed by processor x fails, and the singleton replication
scheme R, = {x} can only switch or stabilize. []

LEMMA 7. Suppose that R, is not a singleton for any w < q. Suppose
that at the end of time period q, the R,_,-fringe processor y (which has a
single neighbor x € R, _,) exits the replication scheme by a contraction test.
Then Ry N T(y, x) # 0, and ¢ = maxX,cp nr(y,x dist(x, 2). (Namely, if a
processor v belonging to T(y, x) is in the replication scheme in the first time
period, then it must be within distance q away from x.)

Proor. First we show Ry, N T(y, x) # 0. Assume by way of contradic-
tion that Ry, N T'(y, x) # 0. Since R,, is not a singleton for any w < ¢, no
processor can enter the replication scheme as a result of the switch test
before time period q. Since y € R,_;, by Lemma 1, processor y must have
entered the replication scheme for the first time before the gth time period,
as a result of an expansion test executed by x. Thus NR(y, x) > NW(x, y).
This inequality implies that the contraction test executed by processor y at
the end of time period g fails. It contradicts the fact that y exits by a
contraction test.

Now we prove the equality ¢ = max,cp 1y, dist(x, z) by induction on q.

Consider first the case ¢ = 1, namely, y exits from the replication
scheme at the end of the first time period. Then y must be an R,-fringe
processor, with x as the only neighbor in R,. Thus the set R, N T(y, x)
consists of ¥y alone, and the equality holds.

Now, suppose that for ¢ < n the equality holds. We consider the case ¢ =
n. Suppose that u € Ry N T(y, x), and dist(x, u) = maxX,cr Ar(y
dist(x, z). Then u must be an R -fringe processor in the first time period,
otherwise one of its neighbors in R, is farther away from x. Since R is not
a singleton replication scheme, there must exist a unique neighbor u’ of u
such that u’ € R,. Then u’' must be on the path that connects u to x and
dist(u', x) = dist(u, x) — 1 (see Figure 9). Since y executes a successful
contraction test at the end of time period q, we must have NR(y, x) <
NW(x, y). Since T(u, u') is a subtree of T(y, x), NR(u, u') = NR(y, x).
Similarly, NW(x, y) = NW(u’, u). These three inequalities combined

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 299

-
o+ b-eee-0—e
o

Figure 10

imply that NR(u, u') < NW(u’', u). Thus the R,-fringe processor u
contracts out of the replication scheme at the end of the first time period.
From the previous paragraph we conclude that max,cg 7y,) dist(x, z)
= maxX,cp,n7(y,x dist(x, z) — 1. Starting from the second time period
(with the nonsingleton replication scheme R,), processor y exits the repli-
cation scheme in another ¢ — 1 time periods. By the induction hypothesis,
we obtain ¢ — 1 = max,cp 1y, ThUS ¢ = MaX,cp A7(y,x dist(x, 2).
O

For any pair of connected replication schemes R, and R,, we denote by
dist(R,, R,) the length of the shortest path from R, to R,; that is,
dist(Rq, Ry) = min,,cp ,egr,dist(m, n). Suppose that P is a longest path
from a processor i € R to a processor j € F, and |P| = p. Namely, dist(i,
J) = p = max,,cg ,er dist(m, n).

LEMMA 8. If R, is not a singleton and F = {j} (i.e., F is a singleton), then
after at most d time periods the ADR algorithm stabilizes.

PrROOF. Suppose that ¢ is the first time period at which the replication
scheme R,_; is a singleton. In other words, R, is not a singleton for each
w<q — 1. Let R,_; = {k}. Since R, is not a singleton, ¢ > 1.

Claim 1. k € P (where P is the longest path from a processori € R, to j).

PrOOF. We prove this claim by way of contradiction. Suppose that & ¢
P. By Lemma 6 the replication scheme switches starting from time period
q. The replication scheme moves from % toj one step in a time period, and
reaches j in a total of dist(k, j) time periods (based on Lemmas 2, 4, and 6,
the replication scheme cannot diverge from the path from % to j and then
come back to it). Let R, = {s}. Denote by ¢ the closest processor to & that is
on P (see Figure 10). It is possible that s = ¢.

Now we draw a contradiction in each of the following cases.

Case .k € R,. We demonstrate that there is a processor v € R, that is
farther away from j than i, contradicting the definition of the path P.

Since R, is connected, all processors (including s and ¢) in the path
connecting i to £ must all belong to R,. Since q is the time period at which
the replication scheme becomes a singleton for the first time, by Lemma 3,
k must be in the replication scheme at all the time periods before g.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

300 . O. Wolfson et al.

Figure 11

Furthermore, processor s must exit the replication scheme by a contraction
test before time period g. Thus we obtain NR(s, k) < NW(k, s). Since at
the end of time period g the switch test (from % to s) succeeds, we obtain
NO(s, k) > NO(k, s). Subtracting the first inequality from the second, we
obtain NW(s, k) > NR(k, s). This inequality implies that if & is an
R-fringe processor while s is in the replication scheme, then the contraction
test of k will succeed. But we know that 2 does not exit the replication
scheme in the first ¢ time periods. Therefore £ does not become an R-fringe
before s does so. Furthermore, observe that before time period g there will
be at most one processor on the path between i and % that exits from the
replication scheme in each time period (remember that the whole path is in
R,). Therefore s will not become an R-fringe processor before dist(i, s)
time periods. This implies that 2 does not become an R-fringe processor
before dist(i, s) time periods. Thus there must exist a processor v € R, N
T(k, s) such that dist(v, k) = dist(i, s) (see Figure 11). Clearly, dist(v, j)
= dist(v, k) + 1 + dist(s, j), and dist(i, j) = dist(i, s) + dist(s, j).
Based on the last three inequalities we obtain dist(v, j) > dist(i, j).

Case Il. k &€ R,. Consider Figure 10 again. By Lemma 1 the processor s
must be in the replication scheme before 2 enters the scheme. By the way ¢
is defined, £ must join the replication scheme as a result of an expansion
test executed by s. Therefore NR(k, s) > NW(s, k). At the end of time
period g, the switch test from % to s succeeds, thus NO(k, s) < NO(s, k).
Subtracting the first inequality from the second, we obtain NW(k, s) <
NR(s, k). Thus at the end of time period ¢, the expansion test (instead of
the switch test) from & to s should have succeeded. This is a contradiction.

Claim 2. dist(i, k) = max,cp dist(z, k), and ¢ = dist(i, k) + 1.
ProOF. We prove this claim in the following cases. Both cases use Claim 1.

Case I. k € R,. We show that dist(i, k) = max,cg, dist(z, k) by way
of contradiction. Suppose that there exists a processor v € R, such that
dist(k, v) > dist(k, i). By definition of P we can easily see that & # j.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 301

Figure 12

Suppose that x is the neighbor of 2 on the path between %2 and j. If the path
between v and k& does not go through x, then v is farther away from j than
i in contradiction to the selection of P. Thus it does go through x (see
Figure 12).

Therefore all the processors in T(k, x), except k£, must exit the replica-
tion scheme before x exits. Namely, £ will be an R-fringe processor before x
contracts out. By Lemma 3 and the way ¢ is defined, £ does not execute a
successful contraction test before time period ¢. Thus NR(k, x) = NW(«x,
k).

By Lemma 6, starting from time period ¢ the replication scheme consists
of a single processor, and it starts to move from %2 to j one step in a time
period. Thus at the end of time period g the replication scheme switches
from % to x. This switch implies the following two inequalities: NR(x, k) =
NW(k, x) since the expansion test (from %k to x) fails; and NO(x, k) >
NO(k, x) since the switch test succeeds. Subtracting the first inequality
from the second, we obtain NW(x, k) > NR(k, x). But this contradicts the
inequality that we obtained in the previous paragraph.

Therefore dist(i, k) = max,cp dist(z, k). By Lemma 7 we conclude
that any neighbor v € R, of & exits the replication scheme within dist(z,
k) time periods, thus ¢ = dist(i, k) + 1.

CaseIl.k &€ R,. We know from Claim 1 that % is in P, thus dist(i, k) =
max,cp, dist(z, k), which proves the first part of Claim 2.

Denote by y the closest processor to £ in R,. Denote by x the neighbor of
%k on the path between y and k2. Thus we have the situation of Figure 13.

By the definition of ¢, 2 will enter the replication scheme by an
expansion test executed by processor x. We claim that R, _, is {k, x}. The
reasons for this are the following: (1) R,_, is not a singleton (i.e., it
includes £ and some of its neighbors), and (2) since at time period g the
expansion test must fail (by Lemma 6) the expansion test of £ could not
have succeeded to include any of its neighbors. Since R, ; = {k}, x
contracts out of the replication scheme at the end of time period ¢ — 1,
thus from Lemma 7 we conclude that ¢ — 1 = dist(i, k).

Therefore, by Claim 2 the ADR algorithm takes dis¢(i, k) time periods to
shrink to the singleton replication scheme {£}. By Lemmas 2 and 6 at time
period g the replication scheme starts to move from {k} to {j}, and it

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

302 . O. Wolfson et al.

&
eossosscd

L]
X k

Figure 13

reaches {j} in another dist(k, j) time periods. Then it stabilizes. Observe
that p = dist(i, k) + dist(k, j) since & € P (by Claim 1). In other words,
the ADR algorithm stabilizes in p time periods. Obviously, p = d, since d
is the length of the longest path in the tree. [l

LEMMA 9. If neither R, nor F is a singleton, then after at most d time
periods the ADR algorithm stabilizes.

ProoOF. In order to prove this lemma, we state the following claims.
CrawM 1. R, is not a singleton for any k.

Proor. Follows easily from Lemma 6.

CrA 2. If a processor x is in some R, then x € R, for k = dist(x, Ry).
ProoOF. Follows easily from Lemma 1.

CraM 3. If for some k = 1 there exists a processory € R,\R,\F, then R,
N F = 0. Furthermore, y ¢ R, (remember that p is the length of the path
between i and j).

Proor. By Claim 2 processor y enters the replication scheme in dist(y,
R,) time periods. Suppose that x is the neighbor of y on the path that
connects y to R,. Then all processors of R, must be in the subtree T'(x, y).
Since y ¢ F, by Claim 1, processor y will become an R-fringe processor and
contract out of the replication scheme. Suppose that in time period w
processor y becomes an R-fringe processor with the only neighbor v in the
replication scheme, and suppose that at the end of time period w processor
y executes a successful contraction test. It is easy to see that x must be
different from v (see Figure 14). By Lemma 3, processor y will not reenter
the replication scheme, and the stability scheme is in the subtree T'(v, y).
Since T(x, y) N T(v,y) = 0, Ry N F = 0. From Lemma 7 we derive w =
max, cp, dist(v, u). Thus w = dist(v, 7). Since the path P goes through v,
dist(v, i) = p. Since y ¢ R,, by Lemma 3,y ¢ R,,.

CLAM 4. If there exists a processor y € Ro\F, theny ¢ R,.

PrROOF. Suppose that x is the processor of F' that is closest to y. Suppose
that z is a neighbor of x on the path between x and y (see Figure 15). By
Lemma 7, all the processors in the subtree T'(z, x) should contract out
within max,cg 7., dist(v, x) time periods. From the definition of P we

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 303

Figure 14

Figure 15

know that p = max,cp 7., dist(v, x). Thus y exits the replication
scheme before time period p (and, by Lemma 3, never reenters).

From Claim 1 we know that only expansion and contraction tests may
succeed. By Claim 2, a processor x in the stability scheme F will be in the
replication scheme in the time period dist(x, Ry). By Lemma 3 a processor
of F' cannot exit the replication scheme. Clearly, by definition of P, dist(x,
Ry) = p. Namely, all processors of F' will enter the replication scheme
within p time periods and never exit. Thus F is a subset of R,,. By Claims 3
and 4, a processor that is not in the stability scheme F' is not in R,. Thus
R,=F. O

LEmMA 10. If Ry, = {i} is a singleton, then after at most (d + 1) time
periods the ADR algorithm stabilizes.

PrOOF. At the end of the first time period either no test succeeds, or a
switch test succeeds, or an expansion test succeeds. We prove the lemma in
each of the following cases.

CASE L. No test succeeds. Then F' = R; that is, at the first time period the
algorithm stabilizes and the lemma follows trivially.

CASE II. The replication scheme switches. By Lemma 2, there will be no
successful expansion tests afterwards, and the only possible successful
tests would be switch tests. Since there is a unique path connecting i and j
in the tree, by Lemma 4 the algorithm must move the replication scheme
from i to j in p time periods and stabilize. Obviously, p = d since the
diameter d of a tree is the length of the longest path in the tree.

Case II1. The replication scheme expands. Then the replication scheme
in the second time period is not a singleton. By Lemmas 8 and 9, starting
from the second time period, in at most d time periods the algorithm
stabilizes. [

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

304 . O. Wolfson et al.

Figure 16

The following example shows that there are read-write patterns for
which stabilization will take d + 1 rather than d time periods. Consider a
network of two processors i and j with the initial replication scheme {i}.
The read-write pattern is that i issues 1 read and 1 write, and j issues 3
reads and 2 writes in each time period. Then the replication will expand to
J at the end of time period 1. At the end of time period 2 the processor i will
contract out, and the replication scheme will stabilize at {}.

A.3 The Stability Scheme is Optimal for the Read-Write Pattern A

LEMMA 11. Suppose that R is a connected replication scheme. Suppose
that j is an R-neighbor processor, and i (i ¢ R) is adjacent to j. Then,

cost(R U {i}, A) —cost(R, A) = (NW(j, i) — NR(i, j)) - c(i, j). (1)

PrROOF. Let us consider how the cost of requests in the subtrees T'(j, i)
and T(i, j) changes when adding the processor i to the scheme R (see
Figure 16). The cost of the reads in the subtree 7'(j, i) will not change, but
every write in the subtree T'(j, i) will cost ¢(i, j) more (propagating from j
to i), hence the requests in T'(j, i) will be more costly by NW(j, i) - ¢(i, j).
Now consider the requests in subtree T'(i, j). Each read will cost c¢(i, j) less
than before, since instead of accessing the copy at j a read can access the
copy at i. The cost of writes in T'(i, j) will not change. Thus the requests in
T(i, j) become less costly by NR(z, j) - c(i, j). O

In Lemmas 12-17, we assume that F' is the stability scheme, and that F
is not a singleton; then we analyze the special case of the singleton stability
scheme.

LEMMA 12. Suppose that i (€ F) is an F-neighbor processor, and j (j &
F) is adjacent to i. Then NW(j, i) = NR(i, j).

PrROOF. Since F is not a singleton, there must exist an F-fringe proces-
sor & # i. Since F is connected, the processors that lie in the path from % to
i must all belong to R. Suppose that n is a neighbor of 2 on this path
between k£ and i (see Figure 17). Obviously, we have NR(k, n) = NR(i, j)
and NW(j, i) = NW(n, k). Since F is the stability scheme, the contraction
test of the R-fringe processor £ must fail. Thus NW(n, k) = NR(k, n).
These three inequalities imply that NW(j, i) = NR(, j). O

LEMMA 13. Suppose that P is a connected replication scheme such that F
N P = 0. Suppose that k is a processor in the path that links P to F, and k
is adjacent to P. Then cost(P, A) = cost(P U {k}, A).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 305

Figure 17

PrROOF. Assume that the path that links PtoFish —k — ... —j — i,
where h € P, i € F, and the processors on the path between them are not
in F or in P (see Figure 18). Obviously, NR(i, j) = NR(k, h), and NW(h,
k) = NW(j, i). From Lemma 12, NW(j, i) = NR(i, j). Combining the last
three inequalities, we obtain NW(h, k) = NR(k, h). From this inequality
and Lemma 11 we can easily see that cost(P, A) = cost(P U {k}, A). O

The next lemma indicates that if a connected replication scheme P
contains all the fringe processors of another connected replication scheme
R, then P contains all the processors of R.

LEMMA 14. Suppose that P and R are two different connected replication
schemes. Suppose that P N R #+ 0, and R\P # 0 (i.e., R is not a subset of P).
Then there must exist an R-fringe processor in the subtree of the network
induced by R\P.

Proor. Straightforward. [

LEMMA 15. Suppose that P is a connected replication scheme such that F
N P # 0. Then cost(P, A) = cost(P U F, A).

PrOOF. We prove the lemma by induction on the number of processors in
F\P. If F\P = (), then the lemma follows trivially. Now, suppose that the
lemma holds for P where F\P contains n — 1 processors. We consider the
case of P where F\P contains n (n = 1) processors. From Lemma 14 we
know that there exists an F-fringe processor ¢ in F\P. Suppose that i is the
closest processor to ¢ in P N F, and the path between ¢ andi isq — p —
... —J — i (see Figure 19).

We show that cost(P, A) = cost(P U {j}, A), and thus the lemma will
follow by the induction hypothesis. Since F is the stability scheme, the
contraction test of ¢ must fail. Hence NR(q, p) = NW(p, q). Obviously,
NR(j, i) = NR(q, p), and NW(p, q) = NW(, j). From the last three
inequalities we obtain NR(j, i) = NW(i, j). From this inequality and
Lemma 11, cost(P, A) = cost(P U {j}, A). O

LEMMA 16. Suppose that P is a connected replication scheme such that F
C P. Then cost(P, A) = cost(F, A).

PrOOF. We prove the lemma by induction on the number of processors of
P\F. Suppose that the lemma holds for every connected replication scheme
P, where P\F consists of n — 1 processors, for n = 1. Assume now that P\F'

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

306 . O. Wolfson et al.

P

Figure 18

Figure 19

consists of n processors. By Lemma 14, there exists a P-fringe processor ¢
so that ¢ € P\F. Suppose that i is the closest processor to ¢ in F, and the
path between g andiisq —p — ... —j — i, wherej € Fandi € F (see
Figure 20).

Since F is the stability scheme, the expansion test from i to j must fail,
namely, NR(j, i) = NW(i, j). Obviously, we have NR(q, p) = NR(j, i),
and NW(i, j) = NW(p, q). From these three inequalities, NR(q, p) =
NW(p, g). From the last inequality and Lemma 11 we conclude that
cost(P, A) = cost(P', A), where P' = P\{q}. Obviously, F C P’, P' is a
connected replication scheme, and P'\F contains n — 1 processors. By the
induction hypothesis we conclude that cost(P’, A) = cost(F, A). The
lemma follows from the last two inequalities. [

LEMMA 17. Suppose that P is an arbitrary connected replication scheme.
Then cost(P, A) = cost(F, A).

PrOOF. We prove the lemma in the following cases:

Casel.PNF # 0. By Lemma 15, cost(P, A) = cost(P U F, A), and by
Lemma 16, cost(P U F, A) = cost(F, A).

Case II. P N F = . There exists a unique path that links P to F in the
tree network. Suppose thati, —i; — ... — i,,_; — i, is such a path, where
ip € P, i, € F, and the processors in between do not belong to P U F.
Denote the set of all processors on this path by L. Then, by applying
Lemma 13 n times we will obtain cost(P, A) = cost(P U L, A). Let P’ =
P U L. Then P’ is a connected replication scheme, and P’ N F # (. From

the proof of Case I, we know that cost(P’, A) = cost(F, A). O

LEMMA 18. Suppose that i and j are two adjacent processors in the tree
network. Then cost({i}, A) — cost({j}, A) = (NO(j, i) — NOG, j)) - c(, j).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 307

Figure 20

Proor. Obvious. [

In Lemmas 19-20 we assume that the stability scheme F' is the singleton
{k}.

LEMMA 19. Suppose that P is a connected replication scheme, and k € P.
Then cost(P, A) = cost(F, A).

PrOOF. We prove the lemma by induction on the number of processors in
P. If P is a singleton, then P = F' and the lemma follows trivially.

Suppose that the lemma holds for any set P of connected processors that
has n — 1 processors. Now consider the case where P has n processors,
where n = 2. By Lemma 14, there must exist a P-fringe processor in P\F,
say, p. Suppose that the path between p and 2 isp — ¢ — ... —j — k.
Since F' is the stability scheme, the expansion test from 2 to j must have
failed, namely, NR(j, k) = NW(k, j). Obviously, NR(p, q) = NR(j, k),
and NW(k, j) = NW(q, p). These three inequalities imply that NR(p, q) =
NW(q, p). From this inequality and Lemma 11 we obtain that cost(P,
A) = cost(P', A), where P’ = P\{p}. Then P’ is a connected replication
scheme, 2 € P’, and P’ has n — 1 processors. By the induction hypothesis
we obtain cost(P’', A) = cost(F, A). The lemma follows from the last two
inequalities. [

LEMMA 20. Suppose that P is a connected replication scheme, and k ¢ P.
Then cost(P, A) = cost(F, A).

PrOOF. We prove the lemma by induction on the number of processors in
P. First, consider a singleton replication scheme P = {i}, where £ # i.
Suppose that the path betweeni and kisi — ¢ — ... —j — k. Since F is
the stability scheme, the switch test from % to j must fail, namely, NO(j, k) =
NO(k, j). Obviously, NO(i, q) = NO(j, k), and NO(k, j) = NO(q, 1).
These three inequalities imply that NO(i, ¢) = NO(q, i). From this
inequality and Lemma 18, we conclude that cost({i}, A) = cost({q}, A).
Using the preceding technique repeatedly along the path from i to &, we
can show that cost({i}, A) = cost({q}, A) = ... = cost({j}, A) = cost({k},
A).

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

308 . O. Wolfson et al.

Figure 21

Suppose now that the lemma holds for every connected replication
scheme P, where P has n — 1 processors. Now we assume that P has n =
2 processors. Suppose that i is the closest processor to £ in P, and the path
between i and Rk isL =i —q — ... —j — k, wherei € P and q & P.
From Lemma 14, we know that there exists a P-fringe processor in P\{i}.
Suppose that p is such a processor, and the path between p and i is M =

p —x — ...— 1. Since P is connected, every processor in M must belong to
P, and the path M overlaps with path L only at i. Therefore the path
linking p to & is the concatenation of M and L, namely,p — x — ... — 1 —
q — ...—J — k (see Figure 21).

Since F' is the stability scheme, the expansion test from % toj must have
failed, namely, NR(j, k) = NW(k, j). Obviously, NR(p, x) = NR(j, k)
and NW(k, j) = NW(x, p). These three inequalities imply that NR(p, x)
= NW(x, p). From this inequality and Lemma 11 we conclude that cos#(P,
A) = cost(P', A), where P’ = P\{p}. Therefore P' is a connected
replication scheme, 2 & P’, and P’ has n — 1 processors. By the induction
hypothesis, cost(P', A) = cost(F, A). Therefore cost(P, A) = cost(F, A).

O

Proor oF THEOREM 3. From Lemma 5 and Lemmas 8-10 we conclude
that if the schedule S is ¢-regular, then the ADR algorithm will stabilize
after at most (d + 1) time periods. Denote the stability scheme by F.
Suppose that P is an arbitrary replication scheme. By Theorem 2, it
suffices to show that cost(P, A) = cost(F, A), for every connected
replication scheme P. But for such a replication scheme the inequality
follows from Lemmas 17, 19, and 20. [

B. Pseudocode of the ADR Algorithm

The code uses two variables, Req and Id. Req is the request type. The
request types are: ‘read’, ‘write’, ‘time slice ¢ expires’, ‘exit’, join’, and
‘switch’. Id is the processor identification from which the request is
submitted. The ‘time slice ¢ expires’ request is executed only by processors
of the replication scheme. The other requests are executed by all the
processors in the network.

Each processor p in the network maintains a directory record Nb —
>Drt for each of its neighbors. For each neighbor Nb, Nb — >Drt = 1 if
and only if the object is replicated at a processor g such that the path from

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 309

p to q goes through Nb. If Nb has a replica, then clearly Nb — >Drt = 1. If
p does not have a replica, then Nb — >Drt = 1 for exactly one neighbor Nb.
The ADR algorithm uses this directory information for the routing of the
read-write requests to the replicated object.

Each processor p that has a replica of the object maintains the counters
‘My — >SumR’, ‘My — >Sum W’, ‘Nb — >NoR’, and ‘Nb — >NoW’,
where

—My — >SumR’ counts the total number of reads performed at p (the
requests could be issued locally or from a neighbor);

—'My — >SumW’ counts the total number of writes performed at p;

—'Nb — >NoR’ counts the total number of reads submitted from a neighbor
Nb; and

—<Nb — >NoW’ counts the total number of writes propagated from a
neighbor Nb.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

310 . O. Wolfson et al.

void ADR(Req, Id)

{
switch (Req)
{
case 'r’ : ADR_r(Id); /* a read request */
break;
case ’w’ : ADR_w(Id); /* a write request */
break;
case ’t’ : ADR_t(Id); /# a scheme change request (time expired) */
break;
case ’x’ : ADR_x(Id); /* an exit request */
break;
case ’j’ : ADR_j(Id); /* a join request */
break;
case ’s’ : ADR_s(Id); /* a switch request */
break;
default fprintf(stderr, "Parameter err in ADR(). \n");
break;
}
}

void ADR_r(Id) /* This procedure is called when a read request is issued
locally (Id == My->Id), or a message from a neighbor is
received indicating that the neighbor wants to read the

object (in this case, Id will be the neighbor’s Id). */
{
if (I have a replica of the object)
{ retrieve the object from the local database;
send the object to processor Id;
My->SumR += 1;
if (Id != My->Id)
Nb->NoR += 1 (for the neighbor Nb that submitted the read);
}
else /* I do not have a local replica */
{ find a neighbor Nb, such that Nb->Drt == 1;
submit the read request to Nb, and wait for the reply;
after getting the object, send it to processor Id;
}
}

void ADR_w(Id)
1
if (I have a replica of the object)
{ update the local replica;
My->SumW += 1;
if (Id == My->Id) /# the write is issued by myself »/
{ for each neighbor Nb, do
{ if (Nb->Drt == 1)
propagate the write to Nb;
} o}
else /* the write is propagated from elsewhere */
{ find the neighbor NB such that NB has the id ’Id’;
NB->NoW += 1;
for each neighbor Nb, do
{ if (Nb->Drt == 1) and (Nb != NB)
propagate the write to Nb;

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 311

else /+ I do not have a local replica */
{ find a neighbor Nb so that Nb->Drt == 1;
submit the write request to Nb;
}
}

void ADR_t(Id)
{
if (I am in the Singleton replication scheme)
/* namely, I have a local replica of the object
and Nb->Drt == 0 for all neighbors */
{ if (Expansion() == 0) /* (Expansion() == 0) if the expansion test failed */
Switch();
}
else if (I am an R_bar_neighbor processor)
/% namely, I have a local replica of the object
and Nb->Drt == 0 for at least one neighbor Nb */
{ if ((Expansion() == 0) &% (I am an R_fringe processor))
/* I am an R_fringe processor if and only if I have a replica
of the object, and (Nb~->Drt == 1) for exactly one neighbor Nb =/
Contraction();
}
else if (I am an R_fringe processor)
Contraction();

My->SumR = My->SumW = 0; /* reset all the counters */
for each neighbor Nb, do
Nb->NoR = Nb->NoW = 0;
}

int Expansion() /* This procedure returns ‘1’ if the expansion test succeeds,
namely at least one of the neighbor joins the replication
scheme in the procedure call} otherwise it returns ‘0’ */
{ int succeed = 0;

for each neighbor Nb
if (Nb->Drt == 0)
{ if (Nb->NoR > My->SumW - Nb->NoW)
{ send a "join" message to Nb, along with a replica of the object;
/* the message is processed by the ADR_j procedure */
Nb->Drt = 1; succeed += 1;

} 3}
return(succeed) ;
}
int Switch() /* This procedure returns ‘1’ if the switch test succeeds,
namelysthe singleton replication scheme switches to a
neighbor? otherwise it returns ‘0’ */

{ int succeed = 0;

while ((succeed == 0) && (there exists an unmarked neighbor Nb))
{ if (2 » (Nb->NoR + Nb->NoW) > My->SumR + My->SumW)
/* the message is processed by the ADR_s procedure */
Nb->Drt = 1;
delete the local replica; deallocate counters;
succeed = 1;

}

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

312 . O. Wolfson et al.

else
mark Nb;
}
return(succeed);

}

int Contraction() /* This procedure is called by an R_fringe processor.
Observe that a pair of processors which constitute
the whole replication scheme may call this procedure
at the same time for contraction. Thus, special care
needs to be taken to prevent the contraction-of both */

{
find a neighbor Nb such that (Nb->Drt == 1);
if (Nb->NoW > My->SumR)
{ send the "exit" message to Nb, and wait for a response;
if (the response is "Yes, you may exit")
delete the local replica; deallocate the counters;
else if (an "exit" request from Nb is received)
{ if (My->Id < Nb->Id)
{ delete the local replica; deallocate the counters;
send a message to Nb saying "No, you may not exit";
}
else
{ send a message to Nb saying "Yes, you may exit";
Nb->Drt = 0;
o}
else if (the response is "No, you may not exit")
Nb->Drt = 0;
}
¥

void ADR_x(Id) /* This procedure is called when an ’exit’ message is received from
an R_fringe neighbor ‘Id’. A processor q will grant such request
if q is not executing the contraction test at the same time. */

send a message to the neighbor ‘Id’ saying "Yes, you may exit";
Id->Drt = 0;
}

void ADR_j(Id) /* This procedure is called when a ‘join’ message is received from
neighbor ‘14’ =/

save the object in the local database;
allocate the counters and initialize them to O;

}

void ADR_s(Id) /#* This procedure is called when a ‘join as a singleton scheme’
message is received from meighbor ‘Id’ #/

{
save the object in the local database;
Id->Drt = 0;
allocate the counters and initialize them to 0;
}
ACKNOWLEDGMENTS

We wish to thank Jeff Ullman and Moti Yung for helpful discussions. We
thank the referees for their valuable suggestions and we thank Kailash

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Adaptive Replication Algorithm . 313

Narayanan and Ramya Raj for developing the software to run some of the
experiments.

REFERENCES

AHAMAD, M., AND AMMAR, M. H. 1991. Multidimensional voting. ACM Trans. Comput. Syst.
9, 4, 399-431.

AGRAWAL, D. AND BERNSTEIN, A. J. 1991. A nonblocking quorum consensus protocol for
replicated data. IEEE Trans. Parallel Distrib. Syst. 2, 2 (April), 171-179.

AWERBUCH, B., BARTAL, Y., AND FiAT, A. 1993. Optimally-competitive distributed file alloca-
tion. In Proceedings of the 25th Annual ACM STOC (Victoria, B.C., Canada, May) ACM,
New York, 164-173.

ALONSO, R., BARBARA, D., AND GARCIA-MoOLINA, H. 1988. Quasi-copies: Efficient data sharing
for information retrieval systems. In Proceedings of EDBT ’88, LNCS 303, Springer-Verlag,
New York.

ALONSO, R., BARBARA, D., AND GARCIA-MoLINA, H. 1990. Data caching issues in an informa-
tion retrieval system. ACM Trans. Database Syst. 15, 3.

AGRAWAL, D. AND EL-ABBADI, A. 1990. The tree quorum protocol: An efficient approach for
managing replicated data. In Proceedings of 16th VLDB (Aug.).

ApaMm, N. R. AND TEwWARI, R. 1993. Regeneration with virtual copies for distributed comput-
ing systems. IEEE Trans. Softw. Eng. 19, 6 (June), 594—-602.

BarTAL, Y., FIAT, A., AND RABANI, Y. 1992. Competitive algorithms for distributed data
management. In Proceedings of the 24th Annual ACM STOC, (Victoria, B.C., Canada, May),
ACM, New York.

BARBARA, D. AND GARCIA-MoOLINA, H. 1993. Replicated data management in mobile environ-
ments: Anything new under the sun? Manuscript, Oct.

BARBARA, D. AND GARCIA-MOLINA, H. 1990. The case for controlled inconsistency in repli-
cated data. In Proceedings of the IEEE Workshop on Replicated Data.

BERNSTEIN, P., HADzZILACOS, V., AND GOODMAN, N. 1987. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA.

BADRINATH, B. R. AND IMIELINSKI, T. 1992. Replication and mobility. In Proceedings of the
2nd Workshop on the Management of Replicated Data (Monterey, CA), 9-12.

BaDRINATH, B. R., IMIELINSKI, T., AND VIRMANI, A. 1992. Locating strategies for personal
communication networks. In Proceedings of the Workshop on Networking of Personal
Commaunication Applications (Dec.).

CERI, S. AND PELAGATTI, G. 1984. Distributed Database Principles and Systems. McGraw-
Hill, New York.

Dowby, L. W. AND FOSTER, D. V. 1982. Comparative models of the file assignment problem.
ACM Comput. Sur. 14, 2.

Dupuy, A., SENGUPTA, S., WOLFSON, O., AND YEMINI, Y. 1991a. Design of the Netmate
network management system. Integrated network management II. In Proceedings of the
Second International Symposium on Integrated Network Management (Washington D.C.,
Apr.).

Dupruy, A., SENGUPTA, S., WOLFSON, O., AND YEMINI, Y. 1991b. NETMATE: A network
management environment. (Invited article), IEEE Netw. (Mar.).

FISCHER, M. AND MICHAEL, A. 1992. Sacrificing serializability to attain high availability of
data in an unreliable network. In ACM-PODS ’92 ACM, New York, 70-75.

GARCIA-MOLINA, H. AND BARBARA, D. 1985. How to assign votes in a distributed system. J.
ACM 32, 4, 841-860.

GIFFORD, D. 1979. Weighted voting for replicated data. In Proceedings of the 7th ACM
Symposium on Operation System Principles, 150-162.

GooDMAN, D. 1991. Trends in cellular and cordless communications. IEEE Commun. Mag.
(June) 31-40.

GRUDIN, J. (ED.). 1991. Special section on computer supported cooperative work. Commun.
ACM 34, 12.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

314 D O. Wolfson et al.

GaAvisH, B. AND SHENG, O. 1990. Dynamic file migration in distributed computer systems.
Commun. ACM 33, 2.

HerLiHY, M. 1987. Dynamic quorum adjustments for partitioned data. ACM Trans. Data-
base Syst. 12, 2.

HuMmEeNIK, K., MATTHEWS, P., STEPHENS, A., AND YESHA, Y. 1992. Minimizing message
complexity in partially replicated databases on hypercube networks. TR CS-92-09 Dept. of
Computer Science, Univ. of Maryland, Baltimore, July.

Huang, Y. AND WOLFSON, O. 1993. A competitive dynamic data replication algorithm. In
IEEE Proceedings of the 9th International Conference on Data Engineering, 310-317.

Huang, Y. AND WOLFSON, O. 1994. Dynamic allocation in distributed system and mobile
computers. In IEEE Proceedings of the 10th International Conference on Data Engineering.
20-29.

IMIELINSKI, T. AND BADRINATH, B. R. 1992. Querying in highly mobile distributed environ-
ments. In Proceedings of the 18th International Conference on VLDB. 41-52.

JAJODIA, S. AND MUTCHLER, D. 1990. Dynamic voting algorithms for maintaining the consis-
tency of a replicated database. ACM Trans. Database Syst. 15, 2 (June), 230-280.

KRISHNAKUMAR, N. AND BERNSTEIN, A. 1991. Bounded ignorance in replicated systems. In
Proceedings of ACM-PODS ’91. ACM, New York.

KISTLER, J. J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the coda file
system. ACM Trans. Comput. Syst. 10, 1 (Feb.), 3-25.

KuMAR, A. 1991. Hierarchical quorum consensus: A new algorithm for managing replicated
data. IEEE Trans. Comput. 40, 9 (Sept.), 996-1004.

LaDIN, R., Liskov, B. AND SHRIRA, L. 1988. A technique for constructing highly available
distributed services. Algorithmica 3.

LapiN, R., Liskov, B., SHRIRA, L., AND GHEMAWAT, S. 1992. Providing high availability using
lazy replication. ACM Trans. Comput. Syst. 10, 4 (Nov.).

LapiN, R., Liskov, B., AND SHRIRA, L. 1990. Lazy replication: Exploiting the semantics of
distributed services. In Proceedings of the Workshop on Management of Replicated Data.
(Nov.), 31-34.

MiNouRrA, T. AND WIEDERHOLD, G. 1982. Resilient extented true-copy token scheme for a
distributed database systems. IEEE Trans. Softw. Eng. SE-8, 3 (May), 173-189.

Ozsu, M. T. AND VALDURIEZ, P. 1991. Principles of Distributed Database Systems. Prentice-
Hall, Englewood Cliffs, NdJ.

Paris, J. 1986. Voting with a variable number of copies. In Fault-Tolerant Computing
Symposium, (June), 50-55.

SpPAsoJEVIC, M. AND BERMAN, P. 1994. Voting as the optimal static pessimistic scheme for
managing replicated data. IEEE Trans. Parallel Distrib. Syst. 5, 1 (Jan.), 64-73.

SENGUPTA, S., DuPUY, A., SCHWARTZ, J., WOLFSON, O., AND YEMINI, Y. 1990. The Netmate
model for network management. IEEE 1990 Network Operations and Management Sympo-
sium (NOMS), (San Diego, CA, Feb.), 11-14.

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., Okasaki, M. E., SIEGEL, E. H., AND STEERE, D.
C. 1990. Coda: A highly available file system for a distributed workstation environment.
IEEE Trans. Comput. 39, 4 (April), 447—-459.

TaoMAS, R. H. 1979. A majority consensus approach to concurrency control for multiple
copy database. ACM Trans. Database Syst. 4, 2 (June), 180-209.

TRIANTAFILLOU, P. AND TAYLOR, D. J. 1991. Using multiple replica classes to improve
performance in distributed systems. In Proceedings of the 11th IEEE International Confer-
ence on Distributed Computing Systems. (April), 34—41.

WoOLFSON, O. AND JAJODIA, S. 1992. Distributed algorithms for adaptive replication of data.
ACM PODS °92 (San-Diego, CA, June), ACM, New York, 146-163.

WOLFSON, O. AND MiLo, A. 1991. The multicast policy and its relationship to replicated data
placement. ACM Trans. Database Syst. 16, 1.

WOLFsON, O., SENGUPTA, S., AND YEMINI, Y. 1991. Managing communication networks by
monitoring databases. IEEE Trans. Softw. Eng. 17, 9 (Sept.), 944-953.

Received September 1994; revised March 1996; accepted June 1996

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

